
ADAPTIVE ON-LINE MULTIPLE SOURCE DETECTION 

Vassilios C. Moussas
1
, Spiridon D. Likothanassis

2
, Sokratis K. Katsikas

3
, and Assimakis K. Leros

3

1
 School of Technological Applications, Technological Educational Institution of Athens 

Egaleo GR-12210, Greece, Email: vmouss@teiath.gr

2
 Dept. of Computer Engineering & Informatics, University of Patras 

Patras GR-26500, Greece, Email: likothan@cti.gr

3
 Dept. of Information & Communication Systems Engineering, University of the Aegean 

Karlovassi GR-83200, Greece, Email: {ska,aleros}@aegean.gr

ABSTRACT 

In this paper an adaptive technique is presented for 

processing the output of a sensor array, which 

simultaneously estimates the number of sources and their 

directions of arrival. The method is based on the 

reformulation of the problem in the time domain, and the 

use of the adaptive Multi-Model Partitioning Algorithm 

(MMPA). The adaptive algorithm identifies the 

dimensionality of the problem (number of sources) using 

a bank of Extended Kalman Filters (EKF). The method 

has the ability of successfully tracking changes in the 

model structure in real time. This means that, for example, 

variations in the number of emitting sources are 

successfully detected. Simulation results demonstrate the 

performance of the proposed method in multiple source 

detection and DOA estimation. 

1. INTRODUCTION 

The problem of direction of arrival (DOA) estimation 

given a set of measurements of the output of a sensor 

array has been a topic of considerable interest in the 

literature. Most of the proposed solutions employ the 

Maximum Likelihood (ML) approach, which has 

appeared in two versions, known as the stochastic ML 

method and the deterministic ML method [1], [2]. Sub-

optimal techniques with reduced computational load, such 

as the Minimum Variance (MV) method [3], the MUSIC 

method [4], the related Minimum Norm method [5], the 

ESPRIT estimator [6] and the weighted subspace fitting 

(WSF) algorithm [7] have become quite popular. 

Implementations of these techniques have been based on 

eigenvalue decomposition (ED) of the sample correlation 

matrix or on singular value decomposition (SVD) of the 

data matrix. These are either off-line or two-step 

processing methods and their performance is critically 

dependent on the validity of their underlying assumptions. 

A crucial assumption made when such methods are 

employed is that the number of sources that generate sine 

waves or incident plane waves contained in the received 

signal is known. In many practical situations, however, 

this prior knowledge may well be unavailable. In these 

applications, a key issue involved in the development of a 

suitable model for the received signal is the detection of 

the number of sources contained in the model. Well 

known approaches to this problem include the Final 

Prediction Error (FPE) criterion, Akaike's Information 

Criterion (AIC) [8] and the Minimum Description Length 

(MDL) Criterion [9]. Most of the techniques that result 

from the above criteria suffer from various deficiencies, 

such as model overfit or underfit, Gaussian assumptions 

and large sample requirements. 

The algorithm proposed herein addresses the 

combined problem of detecting a time-varying number of 

emitting sources and estimating their directions of arrival. 

Our approach consists of transfering the problem to the 

time domain, and using the Multi-Model Partitioning 

Algorithm (MMPA) [10] for estimation of the number of 

sources and Extended Kalman Filters (EKFs) for 

estimation of the corresponding DOAs. 

2. PROBLEM REFORMULATION 

Consider an m element array of sensors and n far-field 

point sources. We define the m  1 vector a( i) to be the 

complex array response for a source at direction i.

Assuming that n signals are simultaneously intercepted, 

under the narrowband assumption, the array output z(t) is 

modeled by the following equation: 
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The m  1 vector process {v(t)} represents additive 

measurement noise with variance R. The columns of the m

n matrix A( ) are the array propagation vectors a( i), i

 1, …, n. These vectors are functions of the directions of 

arrival and model the array response to a unit waveform 

from direction i. We assume that the directions of arrival 

are collected in the parameter vector . The vector s(t)

comprises the complex signal envelopes received at time 

t. For the case under consideration, we assume that the 

signal characteristics are invariant in time, and that the 

signals emitted by the n sources are: 
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The overall steering matrix A( ) can be found by 

considering the spatial problem of estimating the 

directions of arrival (DOA) of incident plane waves. 

Assuming narrowband processing and isotropic sensors, 

we define the steering matrix A( ): 
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where iiii d /)sin(2 , d is the spacing between 

the sensors,  is the signal wavelength, is the angular 

frequency and c is the propagation velocity. Assuming, 

for the moment, that the number of sources is known, the 

problem is to estimate the spatial frequencies i i, i  1, 

…, n, based on the measurements z(t). It is then 

straightforward to compute the directions of arrival 

signified by the angles of incidence i, i = 1, …, n.

Equation (1) now becomes: 
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for l = 1, …, m. We put (8) in a more compact form, 

z(t) = h[ i, i, t] + v(t), and, by setting the state vector to 

be x = [ 1, 2, …, n, 1, 2, …, n ]T, equation (8) 

becomes:
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The array output is sampled at N distinct time instants, 

where N the number of measurements, or snapshots. For 

each snapshot k  1, …, N, equation (9) becomes: 

kkkk vxhz  (10) 

This is the nonlinear observation equation of our 

discrete-time state-space model. The state equation 

describes the evolution of vector x from t tk to t tk+1

and has the form: 

kkkk wxfx 1  (11) 

For stationary sources, the state equation (11) is linear 

[12], but for the general case the state equation must 

incorporate information such as the sampling interval, the 

frequency change, the sources bearings, so equation (11) 

can become more complex or non-linear. 

The nonlinear model of (10)-(11) is in the standard 

state-space form. Therefore, under the assumption that the 

number of sources n is a known constant, any nonlinear 

estimation technique, such as the Extended Kalman Filter 

[13], can be used to process the measurement sequence 

and obtain a recursive estimate )|(ˆ kkx of the state vector 

xk, and in particular of the angles i.

3. THE MULTIMODEL PARTITIONING 

APPROACH TO SOURCE DETECTION 

Let us now relax the assumption that the number of 

sources n is known; we only know that this number 

satisfies the condition n0 n nMAX. It is clear, then, that 

the correct model describing the measurement process is 

one of a family of models described by equations (10)-

(11), being specified by the actual value of the parameter 

n. The problem is then to select the correct model among 

various “candidate” models. 

Our approach has been to use a parallel bank of EKFs, 

which operate concurrently on the same measurements. 

Each filter is based on the system model of (10)-(11), but 

assumes a different value of the parameter n. At time step 

k, each filter processes the measurement zk and produces a 

state estimate );|(ˆ nkkx  conditioned on the hypothesis 

that the corresponding value of the parameter n is the 

correct one. 

At a second level, the MMPA uses the output of all 

filters to select the most likely value of the parameter as 

the one that maximizes the a posteriori probability density 

p(n | k) of the parameter n given the measurement 

sequence up to and including the k-th snapshot. This 

density can be calculated recursively [10], [11]: 
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and where );1|(~ nkkz  and );1|(~ nkkPz  are the 

conditional innovations and corresponding covariance 

matrices produced by the conditional EKFs. 

At each iteration, the algorithm selects the model that 

corresponds to the maximum a posteriori probability as 

the correct one. This probability tends (asymptotically) to 

one, while the remaining probabilities tend to zero. If the 

model structure changes, the algorithm senses the 

variation and increases the corresponding a posteriori 

probability, while decreasing the remaining ones. Thus the 

algorithm is adaptive in the sense of being able to track 

model changes in real time. This procedure incorporates 

the algorithm’s intelligence. 

4. SIMULATION RESULTS 

The performance of the proposed algorithm has been 

assessed by simulation. Here we focus on the algorithms 

capability to detect a variable number of sources and 

estimate their DOAs simultaneously. 

We consider an array of 15 isotropic sensors with 

equal spacing of d  0.45 , and 3 completely coherent 

signals arriving from directions  10 , 30  and 50 . In 

our experiment we used 600 snapshots. The number of 

signals actually received at the array during the 

experiment varied from 1 to 3 as shown in Table I. A 

sample of the simulated signal is shown in Figure 1. 

TABLE I 

SOURCES PRESENT DURING THE EXPERIMENT 

Snapshots Sources 

1-100 10

101-250 10 , 30

251-450 10 , 30 , 50

451-600 10 , 30

For comparison purposes, three conventional 

algorithms were applied to above time-varying scenario. 

All algorithms, after having processed the whole batch of 

600 snapshots, identified 3 sources, although in fact only 

2 were present at the end of the simulation. This result 

suggests the use of a sliding window approach for these 

algorithms. 

Next, the proposed MMPF algorithm was applied to 

the same scenario. The bank of Extended Kalman filters 

consisted of six elements, with the assumed value of the 

parameter n (number of sources) varying from n0  1 to 

nMAX  6. The a posteriori probabilities corresponding to 

each elemental filter were calculated from (12)-(13). The 

simulation results are shown in Figure 2. 

Fig. 1. Emitted signals and sensor array output 

During the first part of the experiment (first 100 

snapshots), the EKF corresponding to n  1 produced the 

a posteriori probability p(n  1 | k)  1, which indicates a 

single source, while the EKF estimated the DOA at 10 .

The rest EKFs gave erroneous results, which were 

nevertheless discarded by the algorithm, since the 

corresponding p(n | k)  0. During the next part of the 

experiment the situation reversed, since p(n  2 | k)  1, 

indicating two sources. In this case, the second EKF 

estimates the sources’ DOA. In all cases the detection of a 

change in the number of sources was very fast. Typically 

5-10 snapshots were sufficient to determine the correct 

number of sources. In contrast, conventional algorithms 

required more snapshots, as shown in Fig. 3. 

5. CONCLUSIONS 

In this work, the general problem of the DOA estimation 

has been addressed. A new method for simultaneously 

estimating the number of sources, as well as the directions 

of arrival of narrowband signals and the signals emitted 

by the sources is presented. The problem formulation 

leads to a nonlinear state-space model with partially 

unknown structure. Since the number of sources is 

unknown, a number of different models that possibly fit 

the data are evaluated, using the Multi-Model Partitioning 

algorithm. Then, the selection of the correct model is 

based on the MAP criterion. The method is adaptive, as it 

is not only able to identify the correct number of sources, 

but to track changes in the model structure in real time as 

well. Thus, the method handles also successfully the 

problem of a variable number of sources. All these 

desirable characteristics have been verified by simulation 

experiments. Finally, note that the algorithm exhibits a 

high degree of parallelism; thus, it can be implemented in 

a parallel processing environment. 
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Figure 2. Detection and estimation results for 1-3 sources at directions 10 , 30  and 50 . Dotted lines indicate a sliding window of 40 

snapshots used with conventional algorithms. 

Fig. 3. DOA estimation using conventional methods 

corresponding to the sliding window of Fig. 2. 
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