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ABSTRACT. In this Péper, a survey of the applications of the
Lainiotis filters tg the problems of active and passive
tracking is presented. Specifically, the RAdaptive Lainiotis
Filter as applied to the active and the passive tracking
problems is discussed as well a5 a pseudolinear Lainiotis
(partitioning) filter specially developed for passive
tracking applications. The performance of the Rdaptive
Lainiotis Filter, the Extended Kkalman Filter and the
pseudolinear Lainiotis filter are evaluated via simulation
experiments. It is shown that the Lainiotis filters are very
successful when used as tracking algorithms, especially when
the target is maneuvering, a very realistic situation and one
in which the Extended Kalman Filter has been shown to fail.

KEYWORDS. Kalman filters, Lainiotis filters, radar, sondr,
nonlinear filtering, parallel processing, adaptive systems.

I. INTROOUCTIDN measures the time delay
T emission and reception aof
target tracking problem has been reflected by the target.
is  still challenging system direct C(however noisy) measurement of
engineers. In its most general form the target position relative
probtem can be described as tracker is available.
Given noisy measurements tracking, an the other
to certain target parameters, tracker does not emit
estimate the target'’'s present 1n5tea? it passively
position, velocity and course. target’s relative bearing.
Rccording to the kind of measurements .
available, two forms of the problem The significance of both forms of the
be distinguished : active (radar) tracking problem is well
and passive (sonar) tracking. In radar not only by the extent
tracking, the tracker emits a signal - practical applications
actively participates - and tracking, but by the
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the signal

manifested,

involving
intensive



research efforts devoted to it as

well. These research efforts have
resulted in a variety of algorithms
for solving the active and the passive
tracking problems.

In this paper, the Lainiotis filters
application to both forms of the
tracking problem is presented and
comparisons are made with
altgorithms found in the literature.

The paper is organized as follows : In

section II the active target tracking
problem (radar) is described. In
section ITI the passive target

tracking problem (sonar)
In section IV the

is described.
Rdaptive Lainiotis

Filter (ALF) is presented and briefly
discussed. In section v the
application of the Lainiotis filters

ta the active and the passive tracking

problem is formulated and their
perfarmance as active and passive
target tracking algorithms is taken up
and examined via simulations and also

compared to the performance of
previously proposed algorithms.
Finally, section VI summarizes the
conclusions.
II. RCTIVE TRARGET TRRCKING

The most commonly used model for this
type of tracking problem is due to
Singer (13870). It is a state space

linear model of a possibly maneuvering

target, of the form
x(k+1) = @(T,a)x(k) + ulk) (1
z(k+1) = Hx(k) + v(k) (2)

where x is the state vector consisting
of the target position (p), the target
speed (p) and the target acceleration
(B). It should be noted that p, p and
P cansist of three components in the
Cartesian coordinate system. © is the
transition matrix and is known up to a

parameter (a) representing the
reciprocal of the maneuver time
constant. For example, a is
approximately equal to 180 for a lazy

term and is approximately equal to 1
for atmospheric turbulence. © is also

a function of the radar sampling rate

(T), usually taken to be small enough
(e.g. equal to 0.1). 0 is given as
1 T (17a=)[-1+aT+e—aT]
®(T,a)= |0 1 (1/a)l1-p—=7] 3)
0 0 p—aT

other |
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u[k? is the plant noise sequence
(which in this case represents the
manual input), which is assumed to be
Gaussian, zero mean and tg have a
variance Q(k) given by
T=/20 T*/8 T=/6
QCk) = 2ac.= |T-+/8 T2}.3 T=i2)1 €4)
USIS T=fZ2 0T
where (o 2] is again unknown and
represents the wvariance of the target
acceleration, which in turn
characterizes the type of target we

are tracking.

Finally, H is the measurement matrix,

given by
H=1[01001 (9)
and v(k) is Gaussian, zero mean white

measurement noise with variance ok=.

The noise processes u(k) and v(k) are
assumed to be wuncorrelated to each
other and to x(0). x(0) is the system
initial state, assumed gaussian
distributed with known mean xo and
variance Ps.

Note that if the two unknown
parameters (a and ©6.®) were known, the
above Linear mode L would be
sufficient. If they are not, one has
to augment the state vector by
incorporating these parameters. This

will result in the following nonlinear
model

Xalk+1) = 0,07 ,%xa(k))  + ua(k) (B)
z(k+1) = haXa(k) + vik) (7)
where

Xalk) = [p(k) p(k) pCk) a(k) o.(k)IT,

D (T ,xa(k)) is

[P Ck)+p(KIT+pCk)C-1+a(K)T+]
E'*c“ k. )T)Iaﬂck)

pCk)+p(k)(1-p~=<*>T)}/a(k)
p(k)e—-ﬂ( b 3T

alk)

Om=

q=(k) (the variance of ({u.} ) is



DCk) | 0
_____ | s o
I < 1 0
I
0 | 0 Qom
and hg = [1 000 Q7.
III. PASSIVE TARGET TRACKING

Contrary to the active target tracking
problem, in this case We are only
interested in estimating the position
and the velocity of the target. 1In
Cartesian Coordinates, the equations
of motion vyietd the following state
and measurement equatiaons

XCk+1) = X(k) + Vo T (8)

Y{k+1) = Y(k) + v. T (9)

Ve lk+1) = v (k) (10)

Vo lk+1) = v (k) 11}
Y(k) - Yo(k)

BCk)= arctan ———m——e_Z___ te'(k) (12)
XCk) - Xxo(k)

where X(k) and Y(k) are the two

components of the target position at

time k, wv. ang Vv~ are the target

velocity camponents (assumed constant

in time), B(k) is the medasured target
bearing, Xalk) and Yo(k) are the
observer positian components at time
K, T is the sampling interval and
e’ (k) is a stochastic series of
independent and identically
distributed r.v.'s, with mean n and
variance R. The state vectar
comprising of XY, Vi and v, is
unobservable i the observer is

stationary or moves continuously aon a

straight Line (Murphy, 19701,
Therefore the observer is assumed to
maneuver. Manipulation of eqs. (8)-
(12) results 1in various Llinearized
models (Lindgren and Gong, 1878;
Ridala, 1879; Weiss and Moore, 1380;
Ridala and Hammel , 1383; Nardaone,
Lindgren and Gong, 1984). Petridis
(1981) formulated the problem in such
& way as to estimate XX03, ¥y wy
and wv., where (XC0),Yco)) is the
initial target position. The required
terget position can then be computed
at any time using these estimates.
Petridis' formulatian is as follows

X(k+1) = x(k) (13)
z(k) = h{k)Ix(k) + ®(k,B)+e(k) (14)
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where

x(kY = [Y(0) LV K (15
B8 = [X(0) w1+ (16.
h(k) = [1 kT] (17
®(k,B) = [-tanp(k) - kTtanf(k)1ls (1s8°
e(k) = E'(k)[KTv"+X(0)-’<g(k)] 19:
and
Ele(k)] = MIKTY, +X(0)-X_(k)] €203
0Caciny = RIKTvV, +X(0)-X_(k) 1= E2a3
On the other hand, Watanabe (13984)
used the following modet (Aidala,
1879; Lindgren and Gong, 1978; Ridals
and Nardone, 1982)
x(k+1) = DCk+1,k)IxCk) - M(k) (22)
BCk+1) = hix(k+1] + ntk+1) (23)
with x(k) comprising of X ¥y Vi, Vi,
BCk+1,k) is a 4x4 matrix given by

1 0 I At 0

|

0 11 0 ot

BCk+1,k) = | ---oo____ (24)

where Ot is the sampling interval anc
M{k) is a four-dimensional vector of

deterministic inputs described by

j}a-(kﬂt—t)dt

MCk) = oo .. (25)
fa-fkot—t)dt

where a. = [@a,. a=yl™ comprises of the

two components of own-sensor

acceleration. On the other hand,

hix(k+1)] = (28)

tan=*Ix(k+1)/yCk+1)1.
The usual assumptions about the nature
of the measurement noise are
applicable.

1V. THE RDAPTIVE LAINIOTIS FILTER

Rn extensive presentation of the ALF
can be found 1in (Lainiotis, 1971;
13762. For the sake of completeness,
only a brief presentation will be



V. APPLICATION OF THE LAINIOTIS
FILTERS IO THE ACTIVE BNO THE

PASSIVE TRARGET TRACKING PROBLEMS

1. Rctive tracking

The application of the ALE and the EKF
to this problem is straightforward.

Referring to the models of eqgs. (1)-
(s5) and (6)-(7), an example - is
presented illustrating how the ALF and
the EKF estimate the target state and

identify the parameter a. For
simplicity, only one Cartesian
coordinate is presented, but the
results are similar for the others

alsoc. For the scenario considered, the
target is an aircraft, moving at a
velocity of 300 ft/sec, is originally
at a distance of 20,000 ft, and
suddenly accelerates. The radar data
rate is 10 samples per second and the
SeNsor noise is Ggr=200 ft. The average

time constant of the maneuver class
used in the scenario is 10 seconds
(a=0.1).

The ALF was designed with three model
conditional Llinear filters, with the
second filter matching the target
characteristics. The EKF was designed
using the model of egs. (B)-(7).

Figs. 1-4 depict the positiaon,
velocity, acceleration and parameter a
per cent normalized estimation errors
of the two filters. Fig. 5 depicts the
a posteriori pdf's of the three
conditional models used by the ALF,
while fig. 6 depicts the ‘target
acceleration vs time. AlLL results were
averaged over 100 Monte Carlo runs.

Studying these figures, we can
conclude that the ALF performs far
better than the EKF in bath estimating
the target position and velocity and
in identifying the target parameters,
even when the target is maneuvering.

2. Passive tracking

The application of the ALF to this
problem 1S not straightforward.
Indeed, observe from the model
definition equations, that the sample

space of the unknown parameters is not

naturally discrete. Therefore, some
sort of discretization of the
parameter space must be performed.
Petridis suggests that a two-
dimensional area R (within which B
should be) should be defined and that

A should be discretized in such a way
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that the required accuracy be
attained. This approach results ip a
mesh with a relatively high number of
nodes. Simulations have revealed that
if this procedure is adopted, a large
number of observations is required for
the algorithm to converge to the
carrect solution. Therefore, an
alternative approach should be
considered. Such an alternative
approach is to divide A 1into M
nonovertapping subareas denoted by A, ,
(each of dimensions a km x b km/h),
i=1,2,...,M, as shown in fig. 7y
Over each subarea an independent
filter 1is defined consisting of N
Kalman filters and the equations of
the RLF. This will be referred to as
the ‘“subarea filter*, It is not
necessary to take N=4 with B,
i=1,2,3,4 defined on each nade of the
subarea; N=2 is sufficient with B8y,
1=1,2 defined on two diagonal nodes.
It is clear that there are M subarea
filters, each corresponding to a
Ssubarea.

Referring to the model of

eqs. (13)-

(21) three examples are presented. In
all examples, the initial observer
positiaon is (0,0) and the time

interval between observations is T=1.5
min. R was taken to be an area of
dimensions (3.6-10 kmix(-12-0.68 km/h)
and a=0.8 km, b=1.8 km/h have been
assumed.

Example 1: The target is assumed to be
initially at point (7,7) (distances in
km) and to be moving at a speed of
18.38 km/h, with speed components Vo= -

6 km/h and v,=18 km/h. The observer
moves on a straight (ine course at a
speed of VYo, = 7.B65 km/h, ve, = 10.8
km/h for 10.5 min and then changes

course by -135= and travels at a speed
of von.=7.65 km/h and Vay= -7.65 km/h
(course -45=), as shown in fig. 8.

Example 2: The target is assumed to be
initially at point (10,10) (distances
in km) and to be moving at a speed of

20.12 km/h,
8 km/h and

with speed components wv,=-
V,=-18 km/h. The observer

moves on a straight Lline course at a
speed of vo. = 10.8 km/h, vo, = 0 km/h
for 10.5 min and then changes course

by 90= and travels at a speed of vo,=0

km/h and Vay= 10.8 km/h, as shawn in
fig. 9.

Example 3: The target is assumed to be
initially at point (7,7) (distances in
km) and to be moving at a speed of
12.92 km/h, with speed components
V.=4.8 km/h and wv_=-12 km/h. The



given here.

Model uncertainty can be summarized by
an unknown, finite dimensional
parameter vectar (parametric
uncertainty) or the functional form of
the model may be unknown (structural
uncertainty).

The discrete adaptive estimation.
problem under consideration is
specified by the following equations
X{k+1) = 0(k+1,k;BIx(k)

+ wik) 27)

z(k) = H(k;Bl)x(k) + v(k) (28)

where B8 is the
which, if known,
specify the model.
assumed to be a time invariant random
variable with known (or assumed) a
priori pdf p(B/0) = p(D). Furthermare,
processes wik) and v(k) are
uncorrelated when conditioned on 8.

unknown parameter,
would completely

This parameter is

Given the measurement set

Zp = {z01), 2z(2), ...; z(K)}
the optimal MMSE estimate %(k/k) of
x(k) is given by

X{k/k) = J[Q(k/k;B)DCB/k)dB (29)
(]

where Q(k/k;BJ is the B-dimensional
MSE state vector estimate obtained by
the corresponding filter matched to
the model with parameter value B8 and
initiaLized with initial conditions
x(0/0;8) and P(0,0/8).

The a posteriori pdf p(B/k) of B8,
given Z., 1is given by the following
recursive Bayes' rule formula
L{(K/k;B)
PB/K)= —mproo p{B/k-1)
“IL(k/k;B)p(BIk—1)dB

where

L(k/k;B) = IP.(k/k-1;8)|-21s=2
exp{-1/2117(k/k-1;8) 1=
P.—%(k/k-1;8)}

with

Pz(k/k—1;8)=HCk;BJP(k,D;B)H*(k;B}+R(k)
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Z(k/k-1;8) = z(k)-H(k;BY®(k,k-1;8)

Slk-17k-1;8)

Comment 1: The above equations pertain

to the case that the pdf associated
with B8 is a continuous function in B8.
When this is the case, one is faced
with the need for a nondenumerable
infinity of filters for the exact
realization of the optimal
partitioning estimator, The usual
approximation performed in this case
is to discretize the sample space.
There exist, however, cases in which
the sample space is naturally
discrete, in these cases, the

integrals above should be replaced by

summations running over all possible
discrete values of B.

Comment 2: It is well known that the
adaptive estimation problem

constitutes a class of nonlinear
estimation problems. Lainiotis’
partitioning adaptive algorithm
decomposes this nonlinear problem into
a8 Llinear nonadaptive part consisting
of a bank of Llinear filters, each
filter matched to an admissible value
of B8 and a nonlinear part, consisting
of the a posteriori pdf's p(B/k}, that
incorporates the adaptive, learning,
or system 1identifying nature of the
adaptive estimator. )

Comment 3: An important feature of the
partitioned realization of the optimal
adaptive estimator is its natural
decoupled structure. Indeed, observe
that all the linear filters needed to
implement the adaptive estimator can
be independently realized. This fact
enables us to implement these filters
in parallet, thus saving enormous
computational time.

Comment 4: It is comforting to know
that when the true parameter value
lies inside the sample space that the
adaptive estimator assumes, the
estimator converges to this value.
This feature has been both
analytically proved (Hawkes and Moore,
1876a) and experimentally validated.
When the true parameter value is
outside the assumed sample space, the
estimator converges to that value in
the sample space that is closer (in

the sense of the Kullback information
measure) to the true value (Hawkes and
Moore, 1376b).



TABLE I

K(20)24. 0, y( 20115, %(40)=L, y( 40125, E, [k~ |, E, ly-7]

m oo |Ee | #0) | yt0) | v Vy x(20) | y(20) | EL200] EL2000 wt40) | y(40) | Eu03 | Efu0)

Lo Jee) Ckmd | Ckm) | Ckm/h) | Ckm/h) | (k) | (km) Ckmd | Chem) § Ghkm) | (ka) | (k) (km}

Oy flesr]e] e 1A wde | 15.58 | 22 [ oz fo.e3 |2y | o 1.1&6

0 |6 1669|748 | -430 | 15.69 3.78 15.33 | 0.2 | 087 0.63 | 23.17 | 0,37 1.82

1 2 4} 6.93)7.25 | -6.20 | 17.61 3.78 16.05 | 0,22 | 0,05 0.63 | 496 | 0,37 0,14

L

TABLE II
R(20)25.5, (20 )21, 540 =1, W40 =B,

mofo | Ee | o) |0 | v vy s(20) | yteey | EL20)f Ef2m] xiu | yisy | Egued | Eguo

=) [%=) Ckm) f Gemd | Cem/h) | Coahy | Oked | ) | ) | k) | ) | comd (km} (k)

0§z 15 | 10.20) .72 | -%.30 | -17.55 | 5.55 0.95 o5 | 0S| ose | -7.83 | 010 0.17

Oy je|wzoles2 | 530 | -17.24 | 5.5 oo oos oo Jom | -2 | oo .28

G jo |17 162003 | 9.3 |-7.01 | 5.55 0.85 12,05 015 090 | -7.8 |00 0034

2 4% 1912|930 | -17.10 | 5.55 2 0.0 o4 | 050 | 7,88 | 0.0 6,31

2 1|8 19 {16201 9.31 | -9.30 | -1&.%6 | 5.55 (.83 | 0,05 0,17 poso | -7.65 f oo 0,35 -

b | & 26 ) i020) .26 | .30 | -16.95 | 5.55 0.79 | .08 0,20 § 090 | -7.489 | 010 ¢,31

TRALE 111
#2022, y(20)=1, 140211, 8, y( 42)=-5,

L I O O RO vy x(20) | y(20) | Ed20] E20) x40) | yv0) | Eu0) | Efu0)

te) 15=) (km) § (km) | Ckm/h) | Cham/h) | Chms | Cemd Ckm) | (k) | (km) | (kmd | (k) (km}

0 2 16 7.2 |1 685 5.1 -11.36 | 9.75 1.17 | .38 n.17 2.3 | 451 | 0,50 o5e

14 p18| 7.2)e79] st -11,85 | 7.75 LIZ 103 |67 123 | 44 fo.so 0,54

o )6 20 7.2 675 5.1 -10,90 | 9.75 1,30 | 0.38 0,30 123 | 4.15 ] 0.5¢ 0.85

2 b |20 721476 ] 5.1 -11.00 | 9.75 1,26 | 0,35 .26 1123 | 42y | 0.50 076

216 122} 7.2)am] 5 10,90 | 9.75 L2g | a:s 1629 |12.3 | 418 | oo .84

b e 2oy 7.2 )e&73| sd -12.50 | 9.75 L28 1035 | 028 [12.3 | 417 | .50 0.82

summarize simulatian riesulbs for
observer moves on a straight Line various wvalues of R and m. 1In these
course at a speed of ve. = 10.8 km/h, tables, Ke 1is the step at which
Voy = 0 km/h for 10.5 min and then convergence was attained. Also figs.
changes course by 135> and travels at 8-10 depict C(apart from real target
a2 speed of vo,=-7.85 km/h and Vay = trajectories) the estimated target
7.865 km/h, as shown in fig. 10. trajectories. Finally, results Afr‘om
the application of the pseudcllnegr

Simulatiaon results for the three filter (Aidala, 19739) to the scenario
examples are presented in Tables I.1IT of example 3 with m=4 and R=36 are
and III respectively. These tables presented in figs. 11-12.
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From these results, we conclude that
the performance of the ALF is very
good, even under adverse circumstances
(high noise Llevels, large initial
target range). Furthermore, it
performs better than the pseudolinear
filter.

We now turn our attentioan to
approach followed by Watanabe

the
(13984) .

Based on the model of egs.
Watanabe developed a
Partitioning filter.
equations follow:

(22)-(28),
pseudolinear
This filter's

ZCkIk) = FaCk/k) + 0.Ck,00%_C0/K) (30)

P(kik) = P.Ck/k) +
@n(k,O)P,(DIk)mnT(k,O) (31)
Xa(k/k) = OCK,k-1)Ka(k-1/k=1)- (32)

M(k-1)

Xe(0/K) =%, C0/k-1)-K_ CkIHCK)
[XnCk/K)+0,(k,0)8.C0/k-1)1(33)

Ke(k) = Po(0/k-1)0.TCk,0)HT(k)
5(k)—t (34)
S5(k) = H(K)I®~T(k,0)P.(0/k-1)
O-T(k,0)HT(k)+1 (35)
P-(0/k) = [I-Ko(k)H(K)®D.(k,0)]
P.(0/k-1) (36)
®~(k,0) = OCKk,k-1)0.Ck-1,0) (37)
where
X-=[F(0)sinB(0) F(0)cosB(0) 0 01T (38)

FC0) = [x=(0) + y=(0)]z-=
with initial conditions

Xn = 0, Pn = 0, P. = I, 0,.(0,0) = I.

Furthermore, Watanabe considered the
possibility of incorporating a data
compression mechanism into the

algorithm. This mechanism consists of
averaging m measurements before
feeding them into the filter and

feeding the filter with their average
instead of the_actual measurements. If

we denote by B(ml) the mean value uf
measurements B(k), B(k+1),..., B(k+m)
which is fed into the filter at time
ml, we have

that

H(ml) = [cnsE(mL) —sinE(mt} 0 017
and
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Bli), my 1
I=mCLl-1)+1

where m indicates the compressing
interval .

Then, the filter equations are
modified as follows

XCk/K)= RaCk/K) + 0.Cml,0)%-C0/mL)(39)

P(k/k) = Fn(ml,0)P.(0/mL)0~TC(ml,0)(40)

RalkTKk) = 00k, k=138, Cko1/k=17- €41)
MCk-1)

X= CO/mUY= R (0/MEL=1)) Ky mLIHCTL)
[Xn(k/K)+0,(mL,0)
£ (0/m(L-1))}1 (42)

Kelml) = P.(C/m(L-12)0,.7(mL,0)HT(mL)

Siml)—= (43)
S(mlY = HmL)®,"(mL ,0)P_CO/m(L{-1))
O T(ml ,0XHT(mL Y+1 (44)
P=(0/ml) = [I-Ko(mL)H(mL)®,(ml,0)]
P-{0/m(L-1)) (45)
®.(ml,0) = O, (ml,mCL-1))
o-(mCL-1),0)(31) (46)
where - -
T 0 I mot 0
|
0 11 0 mot
B Cml,mEL-1)] = |escmsweenes g
G 01 1 0
!
[0 01t 0 1J
The above algorithm was simulated
using a digital computer, in several

situations. Representative results are
shown in figs. 13-16, where the rms
estimation error for three different

renovating intervals (data compression

intervals) averaged over 50 Maonte
Carlo runs is depicted. The scenario
used involved the following The

initial range estimate was 6000m, the
correspondeing bearing was 0, the rms
measurement noise level was 1= and the
renovating interval took on the values

m=10, m=20 and m=40.
From these figures, it can be seen
that the pseudolinear partitioning

filter performs well in estimating the

target position and velacity.
Maoreover, the choice of the renovating
interval plays an important rale in
the Tilbter s performance. Other



results not mentioned
included in (Watanabe,
that increase of
maneuvers does not improve filter
perfaormance, that inreased noise
levels affect the rate of convergence,
and that the initial range estimate is
also a significant parameter affecting
filter performance.

here
1984)
the

but
indicate
observer

VI. CONCLUSIONS

In this paper, a survey of - the
application of the Lainiotis filters
to the problems of active and passive
target tracking was conducted. The
problems formulation was discussed, as

well as the solutions proposed.
Simulation results were presented,
indicating the superiority of the
partitioning approach - over
conventional techniques, such as the
Extended Kalman Filter.
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