
Functional programming 

languages



Functional programming languages
 FP program – set of “pure” functions composed from 

expressions

 Principle of referential transparency

 Expression/function has always the same value for the same 

value of its arguments, independent on context in which 

expression/function is evaluated

 Function – expression is assigned to the name of function 

for some input parameters

 Function gets a value when it is invoked by some concrete 

values of parameters, no side-effects

 Expression is application of a function or operator on 

some arguments

 Arguments can be expressions  make function 

compositions, recursive functions



Functional programing languages

 Abstraction of flow of execution

 No commands and variables

 Immutable function parameters

 Immutable local variables

 Built-in mechanisms of expression evaluation, no need 

to know how it functions

 Conditional expression – expression value depends on 

value of some other sub-expression

 Recursion instead of loops

 Evaluation of FP program starts with a function application 

on concrete values of arguments



Characteristics of Functional PL

 FP abstracts the flow of program execution

 Shorter and more concise programs comparing to imperative 

programming

 Higher degree of abstraction  smaller number of details 

smaller possibility to make errors

 Referential transparency of functions

 Smaller possibility to make errors 
 No side effects

 Better formal analysis and validation of programs

 Greater possibility for program parallelization

 Subexpressions which are arguments of some other expression can 

be evaluated in parallel. 



Higher-Order Functions
 Higher-order functions can have functions as arguments, 

or their results are functions or both

 Example: derivation, integral

 Example.
function inc(x) = x + 1

function twice(f, x) = f(f(x))

twice(inc, 5)   7

 Three typical higher-order functions

 map f l – apply function f on each element of its argument which is list l

 filter f l – filter list l based on logical function f

 fold f l n – reduces list l according to operator (binary function) f, n is

neutral element of operator f

 Functions as elements of a data structure



Strict and ne-strict semantics
 Strict semantics

 Expression (function) can be evaluated in some value only if all its 

subexpressions (arguments) can be evaluated in some values

 Strict/eager evaluation, call by value: expression value (function)

can be evaluated after all its subexpressions (arguments) are 

evaluated

 Imperative programming languages are based on strict 

semantics, excluding logical expressions

 Non-strict semantics

 Expression (function) can be evaluated even if some its 

subexpressions can not be evaluated

 Non-strict (lazy) evaluation, call by need: Expression (function) is 

evaluated only if its value is needed

 Lazy FP languages: FP languages that support non-strict 

semantics (Miranda, Haskell)



Strict and non-strict semantics
 Examples.

 (x = 0) or (1 / x = 5)  

 for x = 0 expression has no value in strict semantics

 In non-strict semantics it has value  true     

 length [2, 2 + 4, 6 / 0, 2 + 3 * 4]

 in strict semantics function can not be evaluated as third expression can not 

be evaluated

 In non-strict semantics elements of list are not evaluated, as function returns 

length of the list

 function sqr(x) = x * x, evaluate sqr(2 + 3)

 Eager evaluation. sqr(2 + 3)  sqr(5)  5 * 5  25

 Lazy evaluation. sqr(2 + 3)  (2 + 3) * (2 + 3)  5 * 5  25



Infinite Data Structures 

 Non-strict semantics offer possibility to work with infinite data 

structures

 Example. An infinite list of 1s can be defined as an infinitely recursive 

function without arguments

function Ones = 1 : Ones

 Operator : (cons) – x : y form the list with head x, and tail y

 Ones  1 : Ones  1 : 1 : Ones  …

 function Head(h : t) = h

 Eager evaluation

Head(Ones)  Head(1 : Ones)  Head(1 : 1 : Ones) 

 Head(1 : 1 : 1 : Ones) Head (1 : 1 : 1 : 1 : Ones)  …

 Lazy evaluation

Head(Ones)  Head(1 : Ones)  1



Lambda calculus
 Theory of functions proposed by Alonzo Church 30es of 20 century

 Lambda calculation is transformation of lambda expression using 

rules of  lambda calculus 

 lambda expression is an identifier

 If x is identifier,  e and n lambda expressions then following are 

also lambda expressions

 λx.e          lambda abstraction

 e n           application (apply e on argument n)

 Lambda abstraction is concept of anonymized function in FL

 λx.x + 1

 (λx.x + 1) 4  5

 λx y.2x + y

 (λx y.2x + y) 3 4  10



Anonymized functions
 Often used as parameters of higher-order functions

 Higher-order functions that return function as their value 

always return anonymized function

 Without anonymized function
function inc(x) = x + 1

function twice(f, x) = f(f(x))

twice(inc, 5)  7

With anonymized function
function twice(f, x) = f(f(x))

twice(λx.x + 1, 5)  7

 Example of function which returns function as its value:

function incrementBy(x) = λy.y + x



Curry Functions
 Currying: definition of function with n arguments as n

nested functions with one argument (Haskell Curry)

orginal function λx1 x2 ... xn.e

Curry function λx1.(λx2.(λx3 ... (λxn.e))) ...)

 Examples of Currying.
function add(x, y) = x + y

function addCurry(x) = λy.x + y

addCurry(5)      λy.5 + y

addCurry(5)(10)  (λy.5 + y) 10  15



Partial function application
 Let f is function with k argumenats

 Partial application of function f is application of function f 

with less than k argumens

 Example.
function add(x, y, z) = x + y + z

add(1, 2, 3)  6

add(1, 2)     λz.3 + z

add(1)        λy z.1 + y + z 

 Partial application ≡ currying, evaluation, de-Currying



LISP (List Processing)
 First FP language has been developed in 60es, John McCarthy

 Only one type for everything – all data are s-expressions

(symbolic expressions)

 S - constants and numbers are s-expressions

 If A and B are s-expressions then (A . B) is s-expressions - pair

 If x1 x2 ... xn s-expressions then (x1 x2 ... xn) is s-expressions - list. () je 

empty list

 List is sequence of nested pairs

(1 2 3 4) ≡ (1 . (2 . (3 . (4 . ()))))

 The same notation for data and functions/programs –

function definition and application are also s-expressions

 (define (functionName arg1 arg2 ... argn) expression)  ≡ definition f

 (functionName arg1 arg2 ... argn)                                  ≡ application f



LISP (List Processing)
 Everything is s-expression

 Built-in functions for checking types of s-expressions: if s-

expression is constant or number or pair or list or empty list,…

 Quote (‘) function 

 ‘(+ 1 2) – it is s-expressions i.e. list with 3 elements

 (+ 1 2)   – s-expressions evaluated in  3 (application of function +)

 Conditional expression

 (if c e1 e2) -- if c is true then value of whole expression is the same as 

value of e1, if c is false then value of whole expression is the same as 

value of e2

 If expression represents value, contrary to if command

(+ 5 (if (> 4 5) 1 2))  (+ 5 (if false 1 2))  (+ 5 2)  7



Successors of  LISP
 ISWIM (if you see what I mean), Landin, ~1960

 Infix notation instead of prefix notation for arithmetic-logic expressions

 Constructions let and where local variables binding

 SECD machine 

 FP, Backus, ~1970

 Functional programming as a composition of higher-order functions

 ML, Milner, ~1970

 Parametric polymorphism, type inference

 SASL, KRC & Miranda, Turner

 Lazy evaluation, ZF expressions for lists forming, Function definition as 

separate cases (sequence of equations) and pattern matching, guard

expressions

 Haskell, 1987, international committee

 “Grand unification of functional languages”, type classes, monads



Haskell
- basic elements of 

language -



Haskell

 “Pure” functional programming language

 Haskell B. Curry (1900 – 1982), mathematician

 Basic language characteristics

 Lazy evaluation of expressions, non-strict semantics and 

infinite data structures

 Static type checking, type inference mechanism

 User defined types and parametric polymorphism (generic 

types)

 Function definition as cases and pattern matching

 ZF expressions and list forming

 type classes and type-safe ad-hock polymorphism (operator 

overloading)



GHC (Glasgow Haskell Compiler) and Haskell platform

 GHC leading (open source) language implementation, part of Haskell 

platform

 https://www.haskell.org/platform/

 GHC has compiler and interpreter for Haskell

https://www.haskell.org/platform/


Types
 Each well defined expression in Haskell has a type

 e :: t – means that expression e can be evaluated in a value of 

type t

 Types are determined automatically during compilation time

 :t (:type) command determines expression type without its 

evaluation
> 2 < 5

True

> :t 2 > 5

2 > 5 :: Bool

> "Ana" ++ " voli" ++ " Milovana"

"Ana voli Milovana"

> :t "Ana" ++ " voli" ++ " Milovana"

"Ana" ++ " voli" ++ " Milovana" :: [Char]



Basic types in Haskell
 Bool

 Logical value True i False

 Char

 Characters: ‘a’, ‘b’, ‘c’,…

 String ([Char])

 Strings realized as a list of characters (“a”, “Mika”, “Pera”, “Zika”, …)

 Int

 Integers of fixed precision (30 bits, interval [-229 .. 229-1])

 Integer

 Integers of arbitrary precision (represented as a list of digits)

 Float, Double

 Real numbers



Tuples

 N-tuple is sequence of  N values that can be of different types

 (t1, t2, …, tN) je tip N-tuple, types of components are t1 to tN

 (False, True) :: (Bool, Bool)

 (False, 1, ‘x’, True) :: (Bool, Int, Char, Bool)

 Number of components is determined by length of N-tuple

 (Bool, Int) is 2-tuple (pair)

 (Char, Int, Bool) is 3- tuple (triplet)

 Example

 (1, (1, ‘x’), True, 5) :: (Bool, (Int, Char), Bool, Int)



Built-in functions on pairs

 fst – returns the first component of pair

 fst (1, 2)  1

 snd – returns the second component of pair

 snd (1, 2)  2

-- effects of fst i snd

myfst (x, _) = x

mysnd (_, x) = x

-- extractions of triplet components

fst3 (x, _, _) = x

snd3 (_, x, _) = x

thr3 (_, _, x) = x



Lists
 List is a sequence of values that  must be of the same type

 List can have arbitrary number of elements

 [t] is type of the list which elements are of type t

 [False, True, False, False] :: [Bool]

 [1, 2, 9, 10] :: [Int]

 [[1, 2], [1, 2, 4], [3, 4, 6, 1, 4]] :: [[Int]]

 [(1, False, 3), (2, True, 6), (4, False, 4)] :: [(Int, Bool, Int)]

 [] is empty list



Built-in functions on lists
 head – returns the first element

 head [1, 2, 3, 4, 5]  1

 head [1]  1

 head []  exception

 tail – returns the tail of the list

 tail [1, 2, 3, 4, 5]  [2, 3, 4, 5]

 tail [1]  []

 Tail []  exception

 !! – selects k-th element of list (indexing starts from 0)

 [10, 20, 30, 40] !! 0  10

 [10, 20, 30, 40] !! 2  30



Built-in functions on lists
 take – selects the first k elements

 take 3 [10, 20, 30, 40, 50]  [10, 20, 30]

 drop – “removes” the first k elements

 drop 3 [10, 20, 30, 40, 50]  [40, 50]

 length – returns the length of list

 length [10, 20, 30, 40, 50]  5; length []  0

 null – check is list empty

 null [10, 20, 30, 40, 50]  False; null []  True

 : (cons operator) – adds new element at the beginning of list

 10 : [20, 30, 40]  [10, 20, 30, 40]

 ++ (append operator) – appends 2 lists

 [10, 20] ++ [30, 40, 50]  [10, 20, 30, 40, 50]



Basic types of Expressions
 Arithmetical expression – composed form arithmetic operators, 

evaluated in some of numerical types

 +, -, *, /, `div`, `mod`

 2 + 3 * 4, (2 + 3) * 4

 1 / 4 (result is real number), 1 `div` 4 (integer division)  

 Logical expressions – composed from logical operators, 

evaluated in some of logical values

 && (conjunction), || (disjunction), not

 Relational expressions – composed form relational operators, 

evaluated in some of of logical values

 <, >, <=, >=, == (equal), /= (non-equal)

 (2 < 5 && "Ana" /= "Mina") || not (3 == 4)



Conditional Expression
 Conditional expression: if e then p else q

 “else branch” in conditional expression in Haskell is 

obligatory

 If value of e is true Then value of whole expression is equal to 

value of expression p, otherwise it has value of q

 Expressions p and q must be evaluated in the same type

 Examples:

 if n > 0 then n else –n

 if a > b then a else b

 5 + if a > b then a else b

 (if a > b then a else b) + 5

 if mod x 2 == 0 then 2 * x else x



Nested Conditional Expressions

 Conditional expression: if e then p else q

 p and/or q also can be conditional expressions

 if a > b 

then if a > c then a else c

else if b > c then b else c

 if c >= 'a' && c <= 'z‘

then “Small letter“

else if c >= 'A' && c <= 'Z‘

then “Capital letter“

else “Not eng. alphabet letter "



Application of function on arguments
 Let f is function with k argumenats

 f a1 a2 a3 … ak – application of function f on arguments a1 to ak

 Examples of built-in numerical functions.
 truncate 12.78           evaluates in 12

 round 12.78 evaluates in 13

 gcd 75 100 evaluates in 25

 Application of function on argumenta has higher priority 

than infix operators

 f a + b is (f a) + b, and not f(a + b)

 f a b + c d is (f a b) + (c d) 

 x `f` y is “syntactical sugar” for f x y



Application of function on arguments

Mathematics Haskell

f(x)

f(x,y)

f(g(x))

f(x,g(y))

f(x)g(y)

f x

f x y

f (g x)

f x (g y)

f x * g y



Function Definition
 Function is defined by specifying one or more declarations 

(“equations”) of the form fname args = expr

 Names of function and arguments begins with a small letter

 For functions defined by different cases (multiple declarations): 

during execution system tries to find the first declaration that 

can be unified (matched) with arguments in function call

(pattern matching)

 To define new  functions programmer can use built-in functions or 

previously user-defined functions

 Examples.

 double x = 2 * x

 doubleEven x = if mod x 2 == 0 then 2 * x else x 

 maks2 a b = if a > b then a else b

 maks3 a b c = maks2 (maks2 a b) c



Examples of recursive functions - different cases

 k - an argument in function definition is a pattern which can be 

matched with anything, k is binding to the argument from function call

 _ is pattern which can be matched with anything without binding

 pattern for function parameters that we do not use efectivelly

-- factorial numbers

fact 0 = 1

fact n = n * fact (n - 1)

-- function to evaluate k-th Fibonacci 

number

fib 1 = 1

fib 2 = 1

fib n = fib (n - 1) + fib (n - 2)

-- function to evaluate a^k za k >= 0

step _ 0 = 1

step a 1 = a

step a k = a * step a (k - 1)



Tail-recursion

 Function is tail-recursive if its evaluation is finished by 

recursive call (except of trivial cases)

 Recursive functions with accumulated parameters are tail-

recursive

-- non-tail-recursive function

fact 0 = 1

fact n = n * fact (n - 1)

-- function factAcc is tail-recursive 

fact' n = factAcc n 1

factAcc 0 acc = acc

factAcc n acc = factAcc (n - 1) (n * acc)



Accumulation Parameter Technique

 Accumulating parameter technique offers possibility to write more 

efficient functions than just following its definitions

 Example. Fibonacci numbers

-- Fibonacci numbers by accumulating parameters technique

fib' 1 = 1

fib' 2 = 1

fib' n = fibAkum 1 1 2 n

{-

   function fibAkum is tail-recursive and of linear 

complexity 

-}  

fibAkum f1 f2 cnt n =

    if n == cnt 

        then f2

        else fibAkum f2 (f1 + f2) (cnt + 1) n



Function Type

 By function type we specify types of arguments and return 

values of the function

 Function type need not be explicitly specified as we define a 

function, it will be determined by Haskell built-in mechanism. 

 f :: x -> y – it is the function type of one argument, it maps 

elements of type x in elements of type y

 Names of types always begins with a capital letter

-- function type

fib :: Int -> Int

-- function definition

fib 1 = 1

fib 2 = 1

fib n = fib (n - 1) + fib (n - 2)



Function Type
 All Haskell functions are Curry functions i.e. with one argument, 

they are Currying implicitly, can be partial applied

 Function type with two arguments  a -> (b -> c)

 Function type with three arguments a -> (b -> (c -> d))

 Separator -> is right associative so parentheses can be deleted

 Function type with two arguments: a -> b -> c

 Function type with three arguments: a -> b -> c -> d

 …

 Function type with k arguments: x1 -> x2 -> x3 -> … -> xk -> y

 Application of function on arguments:

f a1 a2 a3 … ak ≡ (...((f a1) a2) a3) … ak)



-- function that evaluates a^k za k >= 0

step :: Int -> Int -> Int

step _ 0 = 1

step a 1 = a

step a k = a * step a (k - 1)

-- function that multiplies three 

numbers

mul :: Int -> Int -> Int -> Int

mul x y z = x * y * z

-- function of one argument realised 

-- by partial application of function 

mul

mul_3_5 :: Int -> Int

mul_3_5 = mul 3 5

> mul_3_5 10

150



Guarded Expressions (guards)
 Function can be defined using guarded expressions i.e. guards

fname args | g1 = expr1
| g2 = expr2
…

| gk = exprk
| otherwise = expro

desc c 

  | c >= 'a' && c <= 'z' = "Small letter"

  | c >= 'A' && c <= 'Z' = "Capital letter"

  | c >= '0' && c <= '9' = "Digit"

  | otherwise = "Special character"

char1 n

  | n < 0 = "negative"

  | n == 0 = "zero"

  | otherwise = "positive"



Let Expressions 
 Let expression allows evaluation of an expression in extended local 

environments

 let <bindings> in expr

 let

v1 [args] = expr1 -- [] optional

…

vk [args] = exprk
in expr

 Identifiers  v1, v2, …, vk are variables or functions

 In expression expr identifiers v1, v2, …, vk can appear, their values 

are obtained by evaluation of corresponding expressions

 Identifiers v1, v2, …, vk are local, not visible outside the let block

 Values of let expression is the same as value of expression expr 



Let Expressions 
 let

v1 [args] = expr1
v2 [args] = expr2

…

vk [args] = exprk
in expr

 In this case v1, v2, …, vk must be identically indented...

 ... Or explicitly grouped

 let {

v1 [args] = expr1; -- now indentation is not important 

v2 [args] = expr2;

…

vk [args] = exprk; 

} in expr



Let Expressions 

 Notice:

 In the definition of identifier f, identifier y is used, it is defined in let block 

previously

 fact is recursive function

 In the definition of identifier z identifier, k is used, it will be later definide

in let block

 For definition some identifiers in let block we can use all 

identifiers from let block + recursive definitions are allowed

foo a b c d =

  let

    y = a * b

    f x = (x + y) / y 

    fact x = if x == 0 then 1 else x * fact (x - 1)

    z = a * k

    k = b

  in f c + fact d + z



Let Expressions 

cylinderSurface r h =

  let

    base = r * r * 3.14

    wrapper= 2 * r * 3.14 * h

  in 2 * base + wrapper

-- Function that returns pair of two 

numbers

quadraticEquation a b c =

  let

    t = b * b - 4 * a * c

    s = sqrt t

    f1 = (-b + s) / (2 * a)

    f2 = (-b - s) / (2 * a)

  in (f1, f2)



Let Expressions 

prime 2 = True

prime x =

  let

    -- operator . is composition of functions

    -- fromIntegral konverts Int in wider class

    -- of numbers Num

    -- it is necessary to apply sqrt function

    limit = (round . sqrt . fromIntegral) x

    noDivisors d numb

      | numb > limit = True

      | d `mod` numb == 0 = False

      | otherwise       = noDivisors d (numb + 1)

  in

    noDivisors x 2



Where block

 Where block also allows evaluation of an expression in environment 

extended by different definitions (identifiers, functions)

 Differences between where and let block

 new identifiers and assigned expressions are given after the “main” 

expression/function

 where is not expression but syntactical construction (has no value)

 where can be introduced after guarded expressions

bar a b c d =

  f c + fact d + z

  where

    y = a * b

    f x = (x + y) / y 

    fact x = if x == 0 then 1 else x * fact (x - 1)

    z = a * k

    k = b



Where block

 Example of where block introduced after guarded expression

-- weight in kg, hight in m

-- operator ^ 

-- take care of identation!

bodyMassIndex weight height  

    | bmi <= skinny = "low"  

    | bmi <= normal = "normal"  

    | bmi <= fat    = "high"  

    | otherwise     = "very high"  

    where bmi = weight / height ^ 2  

          skinny = 18.5  

          normal = 25.0  

          fat = 30.0



Case expression

 Conditional expression based on pattern matching

case expr of

pattern1  expr1

…

patternk  exprk

 Value of expression is exprp where patternp is the first pattern

which can be matched with expr

-- take care of identation!

fib' k =

  case k of

    1 -> 1

    2 -> 1

    _ -> fib' (k - 1) + fib' (k - 2)



Operators

 Operators are binary functions that can be applied in infix and 

prefix forms

 For operator $ appropriate function is written as ($) 

 2 + 3 (infix) is equivalent with (+) 2 3 (prefix)

-- definition of operator as function

(\+) :: Bool -> Bool -> Bool

(\+) False b = b

(\+) True _ = True

-- pattern matching definition of operator

(\*) :: Bool -> Bool -> Bool

True \* b = b

False \* _ = False

twoDigits x = ((x >= 10) \* (x < 100)) \+

              ((x <= -10) \* (x >= -100))



Anonymous functions

 Anonymous functions in Haskell are defined as follows.

\args -> expr

 \x -> x + 1

 (\x -> x + 1) 5 is evaluated in 6

 \x y -> x + y

 (\x y -> x + y) 5 6 is evaluated in 11

 mult3 = \x y z -> x * y * z

 mult3 1 2 3 is evaluated in 6



Partially applied operators

 Operators are binary functions and can be partially applied

Partial application Result

(+ 1) \x -> x + 1

(1 +) \x -> 1 + x

(== 5) \x -> x == 5

(5 ==) \x -> 5 == x

(/= 5) \x -> x /= 5

(> 5) \x -> x > 5

(5 >) \x -> 5 > x



Higher-order Functions
 Higher-order functions can have functions as arguments, or their 

results are functions or both

-- higher-order function

apply2 f x = f (f x)

> apply2 succ 5

7

> apply2 (+3) 10

16

> apply2 reverse "Ana voli Milovana"

"Ana voli Milovana"

> apply2 (++ " kul") "Haskell"

"Haskell kul kul"

> apply2 (10:) [1, 2, 3, 4]

[10,10,1,2,3,4]



Map Function

 Return as result list applying function (given as first 

argument) on each element of list given as the second 

argument

> map (+1) [1, 2, 3, 4]

[2,3,4,5]

> map (==1) [1, 2, 3, 4]

[True,False,False,False]

> map length ["foo", "bar", "mika", "ab"]

[3,3,4,2]

> map (\x -> x + 3) [1, 2, 3, 4]

[4,5,6,7]



Type classes
 Type class is collection of types which perform operations 

adequate for that Type class

 Type can belong to one or more type classes, in this case it can 

apply all operations adequate for these type classes

 Type classes allows ad-hock polymorphism (operator overloading)

 Examples of built-in Type classes

 Eq: Types that realize operations (==) i (/=)

 Ord: Types that realize operations (<), (<=), (>) i (>=)

 Num: All types that realize arithmetic operations

 Polymorph functions can have some restrictions depending on 

Type class

 (+) :: Num a => a -> a -> a 

 (^) :: (Num a, Integral b) => a -> b -> a



Type classes

-- function that gives the bigger of two comparable elemenets

maks :: (Ord t) => t -> t -> t

maks a b = if a > b then a else b

{-

   maks "Ana" "Mika"

   maks 12 34

   maks 13.4 56

   maks False True

   maks 'a' 'b'

-}

-- function that adds 5 to the bigger of two comparable elemenets

maksPlus5 :: (Num t, Ord t) => t -> t -> t

maksPlus5 a b = (if a > b then a else b) + 5

{-

   maksPlus5 12 34

   maksPlus5 13.4 56

-}



User defined type classes

class Negation a where

  neg :: a -> a

  

instance Negation Integer where

  neg k = k * (-1)

instance Negation Bool where

  neg True = False

  neg False = True

> neg (1 > 2)

True

> neg (21 + 45)

-66


