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Functional programming languages
 FP program – set of “pure” functions composed from 

expressions

 Principle of referential transparency

 Expression/function has always the same value for the same 

value of its arguments, independent on context in which 

expression/function is evaluated

 Function – expression is assigned to the name of function 

for some input parameters

 Function gets a value when it is invoked by some concrete 

values of parameters, no side-effects

 Expression is application of a function or operator on 

some arguments

 Arguments can be expressions  make function 

compositions, recursive functions



Functional programing languages

 Abstraction of flow of execution

 No commands and variables

 Immutable function parameters

 Immutable local variables

 Built-in mechanisms of expression evaluation, no need 

to know how it functions

 Conditional expression – expression value depends on 

value of some other sub-expression

 Recursion instead of loops

 Evaluation of FP program starts with a function application 

on concrete values of arguments



Characteristics of Functional PL

 FP abstracts the flow of program execution

 Shorter and more concise programs comparing to imperative 

programming

 Higher degree of abstraction  smaller number of details 

smaller possibility to make errors

 Referential transparency of functions

 Smaller possibility to make errors 
 No side effects

 Better formal analysis and validation of programs

 Greater possibility for program parallelization

 Subexpressions which are arguments of some other expression can 

be evaluated in parallel. 



Higher-Order Functions
 Higher-order functions can have functions as arguments, 

or their results are functions or both

 Example: derivation, integral

 Example.
function inc(x) = x + 1

function twice(f, x) = f(f(x))

twice(inc, 5)   7

 Three typical higher-order functions

 map f l – apply function f on each element of its argument which is list l

 filter f l – filter list l based on logical function f

 fold f l n – reduces list l according to operator (binary function) f, n is

neutral element of operator f

 Functions as elements of a data structure



Strict and ne-strict semantics
 Strict semantics

 Expression (function) can be evaluated in some value only if all its 

subexpressions (arguments) can be evaluated in some values

 Strict/eager evaluation, call by value: expression value (function)

can be evaluated after all its subexpressions (arguments) are 

evaluated

 Imperative programming languages are based on strict 

semantics, excluding logical expressions

 Non-strict semantics

 Expression (function) can be evaluated even if some its 

subexpressions can not be evaluated

 Non-strict (lazy) evaluation, call by need: Expression (function) is 

evaluated only if its value is needed

 Lazy FP languages: FP languages that support non-strict 

semantics (Miranda, Haskell)



Strict and non-strict semantics
 Examples.

 (x = 0) or (1 / x = 5)  

 for x = 0 expression has no value in strict semantics

 In non-strict semantics it has value  true     

 length [2, 2 + 4, 6 / 0, 2 + 3 * 4]

 in strict semantics function can not be evaluated as third expression can not 

be evaluated

 In non-strict semantics elements of list are not evaluated, as function returns 

length of the list

 function sqr(x) = x * x, evaluate sqr(2 + 3)

 Eager evaluation. sqr(2 + 3)  sqr(5)  5 * 5  25

 Lazy evaluation. sqr(2 + 3)  (2 + 3) * (2 + 3)  5 * 5  25



Infinite Data Structures 

 Non-strict semantics offer possibility to work with infinite data 

structures

 Example. An infinite list of 1s can be defined as an infinitely recursive 

function without arguments

function Ones = 1 : Ones

 Operator : (cons) – x : y form the list with head x, and tail y

 Ones  1 : Ones  1 : 1 : Ones  …

 function Head(h : t) = h

 Eager evaluation

Head(Ones)  Head(1 : Ones)  Head(1 : 1 : Ones) 

 Head(1 : 1 : 1 : Ones) Head (1 : 1 : 1 : 1 : Ones)  …

 Lazy evaluation

Head(Ones)  Head(1 : Ones)  1



Lambda calculus
 Theory of functions proposed by Alonzo Church 30es of 20 century

 Lambda calculation is transformation of lambda expression using 

rules of  lambda calculus 

 lambda expression is an identifier

 If x is identifier,  e and n lambda expressions then following are 

also lambda expressions

 λx.e          lambda abstraction

 e n           application (apply e on argument n)

 Lambda abstraction is concept of anonymized function in FL

 λx.x + 1

 (λx.x + 1) 4  5

 λx y.2x + y

 (λx y.2x + y) 3 4  10



Anonymized functions
 Often used as parameters of higher-order functions

 Higher-order functions that return function as their value 

always return anonymized function

 Without anonymized function
function inc(x) = x + 1

function twice(f, x) = f(f(x))

twice(inc, 5)  7

With anonymized function
function twice(f, x) = f(f(x))

twice(λx.x + 1, 5)  7

 Example of function which returns function as its value:

function incrementBy(x) = λy.y + x



Curry Functions
 Currying: definition of function with n arguments as n

nested functions with one argument (Haskell Curry)

orginal function λx1 x2 ... xn.e

Curry function λx1.(λx2.(λx3 ... (λxn.e))) ...)

 Examples of Currying.
function add(x, y) = x + y

function addCurry(x) = λy.x + y

addCurry(5)      λy.5 + y

addCurry(5)(10)  (λy.5 + y) 10  15



Partial function application
 Let f is function with k argumenats

 Partial application of function f is application of function f 

with less than k argumens

 Example.
function add(x, y, z) = x + y + z

add(1, 2, 3)  6

add(1, 2)     λz.3 + z

add(1)        λy z.1 + y + z 

 Partial application ≡ currying, evaluation, de-Currying



LISP (List Processing)
 First FP language has been developed in 60es, John McCarthy

 Only one type for everything – all data are s-expressions

(symbolic expressions)

 S - constants and numbers are s-expressions

 If A and B are s-expressions then (A . B) is s-expressions - pair

 If x1 x2 ... xn s-expressions then (x1 x2 ... xn) is s-expressions - list. () je 

empty list

 List is sequence of nested pairs

(1 2 3 4) ≡ (1 . (2 . (3 . (4 . ()))))

 The same notation for data and functions/programs –

function definition and application are also s-expressions

 (define (functionName arg1 arg2 ... argn) expression)  ≡ definition f

 (functionName arg1 arg2 ... argn)                                  ≡ application f



LISP (List Processing)
 Everything is s-expression

 Built-in functions for checking types of s-expressions: if s-

expression is constant or number or pair or list or empty list,…

 Quote (‘) function 

 ‘(+ 1 2) – it is s-expressions i.e. list with 3 elements

 (+ 1 2)   – s-expressions evaluated in  3 (application of function +)

 Conditional expression

 (if c e1 e2) -- if c is true then value of whole expression is the same as 

value of e1, if c is false then value of whole expression is the same as 

value of e2

 If expression represents value, contrary to if command

(+ 5 (if (> 4 5) 1 2))  (+ 5 (if false 1 2))  (+ 5 2)  7



Successors of  LISP
 ISWIM (if you see what I mean), Landin, ~1960

 Infix notation instead of prefix notation for arithmetic-logic expressions

 Constructions let and where local variables binding

 SECD machine 

 FP, Backus, ~1970

 Functional programming as a composition of higher-order functions

 ML, Milner, ~1970

 Parametric polymorphism, type inference

 SASL, KRC & Miranda, Turner

 Lazy evaluation, ZF expressions for lists forming, Function definition as 

separate cases (sequence of equations) and pattern matching, guard

expressions

 Haskell, 1987, international committee

 “Grand unification of functional languages”, type classes, monads



Haskell
- basic elements of 

language -



Haskell

 “Pure” functional programming language

 Haskell B. Curry (1900 – 1982), mathematician

 Basic language characteristics

 Lazy evaluation of expressions, non-strict semantics and 

infinite data structures

 Static type checking, type inference mechanism

 User defined types and parametric polymorphism (generic 

types)

 Function definition as cases and pattern matching

 ZF expressions and list forming

 type classes and type-safe ad-hock polymorphism (operator 

overloading)



GHC (Glasgow Haskell Compiler) and Haskell platform

 GHC leading (open source) language implementation, part of Haskell 

platform

 https://www.haskell.org/platform/

 GHC has compiler and interpreter for Haskell

https://www.haskell.org/platform/


Types
 Each well defined expression in Haskell has a type

 e :: t – means that expression e can be evaluated in a value of 

type t

 Types are determined automatically during compilation time

 :t (:type) command determines expression type without its 

evaluation
> 2 < 5

True

> :t 2 > 5

2 > 5 :: Bool

> "Ana" ++ " voli" ++ " Milovana"

"Ana voli Milovana"

> :t "Ana" ++ " voli" ++ " Milovana"

"Ana" ++ " voli" ++ " Milovana" :: [Char]



Basic types in Haskell
 Bool

 Logical value True i False

 Char

 Characters: ‘a’, ‘b’, ‘c’,…

 String ([Char])

 Strings realized as a list of characters (“a”, “Mika”, “Pera”, “Zika”, …)

 Int

 Integers of fixed precision (30 bits, interval [-229 .. 229-1])

 Integer

 Integers of arbitrary precision (represented as a list of digits)

 Float, Double

 Real numbers



Tuples

 N-tuple is sequence of  N values that can be of different types

 (t1, t2, …, tN) je tip N-tuple, types of components are t1 to tN

 (False, True) :: (Bool, Bool)

 (False, 1, ‘x’, True) :: (Bool, Int, Char, Bool)

 Number of components is determined by length of N-tuple

 (Bool, Int) is 2-tuple (pair)

 (Char, Int, Bool) is 3- tuple (triplet)

 Example

 (1, (1, ‘x’), True, 5) :: (Bool, (Int, Char), Bool, Int)



Built-in functions on pairs

 fst – returns the first component of pair

 fst (1, 2)  1

 snd – returns the second component of pair

 snd (1, 2)  2

-- effects of fst i snd

myfst (x, _) = x

mysnd (_, x) = x

-- extractions of triplet components

fst3 (x, _, _) = x

snd3 (_, x, _) = x

thr3 (_, _, x) = x



Lists
 List is a sequence of values that  must be of the same type

 List can have arbitrary number of elements

 [t] is type of the list which elements are of type t

 [False, True, False, False] :: [Bool]

 [1, 2, 9, 10] :: [Int]

 [[1, 2], [1, 2, 4], [3, 4, 6, 1, 4]] :: [[Int]]

 [(1, False, 3), (2, True, 6), (4, False, 4)] :: [(Int, Bool, Int)]

 [] is empty list



Built-in functions on lists
 head – returns the first element

 head [1, 2, 3, 4, 5]  1

 head [1]  1

 head []  exception

 tail – returns the tail of the list

 tail [1, 2, 3, 4, 5]  [2, 3, 4, 5]

 tail [1]  []

 Tail []  exception

 !! – selects k-th element of list (indexing starts from 0)

 [10, 20, 30, 40] !! 0  10

 [10, 20, 30, 40] !! 2  30



Built-in functions on lists
 take – selects the first k elements

 take 3 [10, 20, 30, 40, 50]  [10, 20, 30]

 drop – “removes” the first k elements

 drop 3 [10, 20, 30, 40, 50]  [40, 50]

 length – returns the length of list

 length [10, 20, 30, 40, 50]  5; length []  0

 null – check is list empty

 null [10, 20, 30, 40, 50]  False; null []  True

 : (cons operator) – adds new element at the beginning of list

 10 : [20, 30, 40]  [10, 20, 30, 40]

 ++ (append operator) – appends 2 lists

 [10, 20] ++ [30, 40, 50]  [10, 20, 30, 40, 50]



Basic types of Expressions
 Arithmetical expression – composed form arithmetic operators, 

evaluated in some of numerical types

 +, -, *, /, `div`, `mod`

 2 + 3 * 4, (2 + 3) * 4

 1 / 4 (result is real number), 1 `div` 4 (integer division)  

 Logical expressions – composed from logical operators, 

evaluated in some of logical values

 && (conjunction), || (disjunction), not

 Relational expressions – composed form relational operators, 

evaluated in some of of logical values

 <, >, <=, >=, == (equal), /= (non-equal)

 (2 < 5 && "Ana" /= "Mina") || not (3 == 4)



Conditional Expression
 Conditional expression: if e then p else q

 “else branch” in conditional expression in Haskell is 

obligatory

 If value of e is true Then value of whole expression is equal to 

value of expression p, otherwise it has value of q

 Expressions p and q must be evaluated in the same type

 Examples:

 if n > 0 then n else –n

 if a > b then a else b

 5 + if a > b then a else b

 (if a > b then a else b) + 5

 if mod x 2 == 0 then 2 * x else x



Nested Conditional Expressions

 Conditional expression: if e then p else q

 p and/or q also can be conditional expressions

 if a > b 

then if a > c then a else c

else if b > c then b else c

 if c >= 'a' && c <= 'z‘

then “Small letter“

else if c >= 'A' && c <= 'Z‘

then “Capital letter“

else “Not eng. alphabet letter "



Application of function on arguments
 Let f is function with k argumenats

 f a1 a2 a3 … ak – application of function f on arguments a1 to ak

 Examples of built-in numerical functions.
 truncate 12.78           evaluates in 12

 round 12.78 evaluates in 13

 gcd 75 100 evaluates in 25

 Application of function on argumenta has higher priority 

than infix operators

 f a + b is (f a) + b, and not f(a + b)

 f a b + c d is (f a b) + (c d) 

 x `f` y is “syntactical sugar” for f x y



Application of function on arguments

Mathematics Haskell

f(x)

f(x,y)

f(g(x))

f(x,g(y))

f(x)g(y)

f x

f x y

f (g x)

f x (g y)

f x * g y



Function Definition
 Function is defined by specifying one or more declarations 

(“equations”) of the form fname args = expr

 Names of function and arguments begins with a small letter

 For functions defined by different cases (multiple declarations): 

during execution system tries to find the first declaration that 

can be unified (matched) with arguments in function call

(pattern matching)

 To define new  functions programmer can use built-in functions or 

previously user-defined functions

 Examples.

 double x = 2 * x

 doubleEven x = if mod x 2 == 0 then 2 * x else x 

 maks2 a b = if a > b then a else b

 maks3 a b c = maks2 (maks2 a b) c



Examples of recursive functions - different cases

 k - an argument in function definition is a pattern which can be 

matched with anything, k is binding to the argument from function call

 _ is pattern which can be matched with anything without binding

 pattern for function parameters that we do not use efectivelly

-- factorial numbers

fact 0 = 1

fact n = n * fact (n - 1)

-- function to evaluate k-th Fibonacci 

number

fib 1 = 1

fib 2 = 1

fib n = fib (n - 1) + fib (n - 2)

-- function to evaluate a^k za k >= 0

step _ 0 = 1

step a 1 = a

step a k = a * step a (k - 1)



Tail-recursion

 Function is tail-recursive if its evaluation is finished by 

recursive call (except of trivial cases)

 Recursive functions with accumulated parameters are tail-

recursive

-- non-tail-recursive function

fact 0 = 1

fact n = n * fact (n - 1)

-- function factAcc is tail-recursive 

fact' n = factAcc n 1

factAcc 0 acc = acc

factAcc n acc = factAcc (n - 1) (n * acc)



Accumulation Parameter Technique

 Accumulating parameter technique offers possibility to write more 

efficient functions than just following its definitions

 Example. Fibonacci numbers

-- Fibonacci numbers by accumulating parameters technique

fib' 1 = 1

fib' 2 = 1

fib' n = fibAkum 1 1 2 n

{-

   function fibAkum is tail-recursive and of linear 

complexity 

-}  

fibAkum f1 f2 cnt n =

    if n == cnt 

        then f2

        else fibAkum f2 (f1 + f2) (cnt + 1) n



Function Type

 By function type we specify types of arguments and return 

values of the function

 Function type need not be explicitly specified as we define a 

function, it will be determined by Haskell built-in mechanism. 

 f :: x -> y – it is the function type of one argument, it maps 

elements of type x in elements of type y

 Names of types always begins with a capital letter

-- function type

fib :: Int -> Int

-- function definition

fib 1 = 1

fib 2 = 1

fib n = fib (n - 1) + fib (n - 2)



Function Type
 All Haskell functions are Curry functions i.e. with one argument, 

they are Currying implicitly, can be partial applied

 Function type with two arguments  a -> (b -> c)

 Function type with three arguments a -> (b -> (c -> d))

 Separator -> is right associative so parentheses can be deleted

 Function type with two arguments: a -> b -> c

 Function type with three arguments: a -> b -> c -> d

 …

 Function type with k arguments: x1 -> x2 -> x3 -> … -> xk -> y

 Application of function on arguments:

f a1 a2 a3 … ak ≡ (...((f a1) a2) a3) … ak)



-- function that evaluates a^k za k >= 0

step :: Int -> Int -> Int

step _ 0 = 1

step a 1 = a

step a k = a * step a (k - 1)

-- function that multiplies three 

numbers

mul :: Int -> Int -> Int -> Int

mul x y z = x * y * z

-- function of one argument realised 

-- by partial application of function 

mul

mul_3_5 :: Int -> Int

mul_3_5 = mul 3 5

> mul_3_5 10

150



Guarded Expressions (guards)
 Function can be defined using guarded expressions i.e. guards

fname args | g1 = expr1
| g2 = expr2
…

| gk = exprk
| otherwise = expro

desc c 

  | c >= 'a' && c <= 'z' = "Small letter"

  | c >= 'A' && c <= 'Z' = "Capital letter"

  | c >= '0' && c <= '9' = "Digit"

  | otherwise = "Special character"

char1 n

  | n < 0 = "negative"

  | n == 0 = "zero"

  | otherwise = "positive"



Let Expressions 
 Let expression allows evaluation of an expression in extended local 

environments

 let <bindings> in expr

 let

v1 [args] = expr1 -- [] optional

…

vk [args] = exprk
in expr

 Identifiers  v1, v2, …, vk are variables or functions

 In expression expr identifiers v1, v2, …, vk can appear, their values 

are obtained by evaluation of corresponding expressions

 Identifiers v1, v2, …, vk are local, not visible outside the let block

 Values of let expression is the same as value of expression expr 



Let Expressions 
 let

v1 [args] = expr1
v2 [args] = expr2

…

vk [args] = exprk
in expr

 In this case v1, v2, …, vk must be identically indented...

 ... Or explicitly grouped

 let {

v1 [args] = expr1; -- now indentation is not important 

v2 [args] = expr2;

…

vk [args] = exprk; 

} in expr



Let Expressions 

 Notice:

 In the definition of identifier f, identifier y is used, it is defined in let block 

previously

 fact is recursive function

 In the definition of identifier z identifier, k is used, it will be later definide

in let block

 For definition some identifiers in let block we can use all 

identifiers from let block + recursive definitions are allowed

foo a b c d =

  let

    y = a * b

    f x = (x + y) / y 

    fact x = if x == 0 then 1 else x * fact (x - 1)

    z = a * k

    k = b

  in f c + fact d + z



Let Expressions 

cylinderSurface r h =

  let

    base = r * r * 3.14

    wrapper= 2 * r * 3.14 * h

  in 2 * base + wrapper

-- Function that returns pair of two 

numbers

quadraticEquation a b c =

  let

    t = b * b - 4 * a * c

    s = sqrt t

    f1 = (-b + s) / (2 * a)

    f2 = (-b - s) / (2 * a)

  in (f1, f2)



Let Expressions 

prime 2 = True

prime x =

  let

    -- operator . is composition of functions

    -- fromIntegral konverts Int in wider class

    -- of numbers Num

    -- it is necessary to apply sqrt function

    limit = (round . sqrt . fromIntegral) x

    noDivisors d numb

      | numb > limit = True

      | d `mod` numb == 0 = False

      | otherwise       = noDivisors d (numb + 1)

  in

    noDivisors x 2



Where block

 Where block also allows evaluation of an expression in environment 

extended by different definitions (identifiers, functions)

 Differences between where and let block

 new identifiers and assigned expressions are given after the “main” 

expression/function

 where is not expression but syntactical construction (has no value)

 where can be introduced after guarded expressions

bar a b c d =

  f c + fact d + z

  where

    y = a * b

    f x = (x + y) / y 

    fact x = if x == 0 then 1 else x * fact (x - 1)

    z = a * k

    k = b



Where block

 Example of where block introduced after guarded expression

-- weight in kg, hight in m

-- operator ^ 

-- take care of identation!

bodyMassIndex weight height  

    | bmi <= skinny = "low"  

    | bmi <= normal = "normal"  

    | bmi <= fat    = "high"  

    | otherwise     = "very high"  

    where bmi = weight / height ^ 2  

          skinny = 18.5  

          normal = 25.0  

          fat = 30.0



Case expression

 Conditional expression based on pattern matching

case expr of

pattern1  expr1

…

patternk  exprk

 Value of expression is exprp where patternp is the first pattern

which can be matched with expr

-- take care of identation!

fib' k =

  case k of

    1 -> 1

    2 -> 1

    _ -> fib' (k - 1) + fib' (k - 2)



Operators

 Operators are binary functions that can be applied in infix and 

prefix forms

 For operator $ appropriate function is written as ($) 

 2 + 3 (infix) is equivalent with (+) 2 3 (prefix)

-- definition of operator as function

(\+) :: Bool -> Bool -> Bool

(\+) False b = b

(\+) True _ = True

-- pattern matching definition of operator

(\*) :: Bool -> Bool -> Bool

True \* b = b

False \* _ = False

twoDigits x = ((x >= 10) \* (x < 100)) \+

              ((x <= -10) \* (x >= -100))



Anonymous functions

 Anonymous functions in Haskell are defined as follows.

\args -> expr

 \x -> x + 1

 (\x -> x + 1) 5 is evaluated in 6

 \x y -> x + y

 (\x y -> x + y) 5 6 is evaluated in 11

 mult3 = \x y z -> x * y * z

 mult3 1 2 3 is evaluated in 6



Partially applied operators

 Operators are binary functions and can be partially applied

Partial application Result

(+ 1) \x -> x + 1

(1 +) \x -> 1 + x

(== 5) \x -> x == 5

(5 ==) \x -> 5 == x

(/= 5) \x -> x /= 5

(> 5) \x -> x > 5

(5 >) \x -> 5 > x



Higher-order Functions
 Higher-order functions can have functions as arguments, or their 

results are functions or both

-- higher-order function

apply2 f x = f (f x)

> apply2 succ 5

7

> apply2 (+3) 10

16

> apply2 reverse "Ana voli Milovana"

"Ana voli Milovana"

> apply2 (++ " kul") "Haskell"

"Haskell kul kul"

> apply2 (10:) [1, 2, 3, 4]

[10,10,1,2,3,4]



Map Function

 Return as result list applying function (given as first 

argument) on each element of list given as the second 

argument

> map (+1) [1, 2, 3, 4]

[2,3,4,5]

> map (==1) [1, 2, 3, 4]

[True,False,False,False]

> map length ["foo", "bar", "mika", "ab"]

[3,3,4,2]

> map (\x -> x + 3) [1, 2, 3, 4]

[4,5,6,7]



Type classes
 Type class is collection of types which perform operations 

adequate for that Type class

 Type can belong to one or more type classes, in this case it can 

apply all operations adequate for these type classes

 Type classes allows ad-hock polymorphism (operator overloading)

 Examples of built-in Type classes

 Eq: Types that realize operations (==) i (/=)

 Ord: Types that realize operations (<), (<=), (>) i (>=)

 Num: All types that realize arithmetic operations

 Polymorph functions can have some restrictions depending on 

Type class

 (+) :: Num a => a -> a -> a 

 (^) :: (Num a, Integral b) => a -> b -> a



Type classes

-- function that gives the bigger of two comparable elemenets

maks :: (Ord t) => t -> t -> t

maks a b = if a > b then a else b

{-

   maks "Ana" "Mika"

   maks 12 34

   maks 13.4 56

   maks False True

   maks 'a' 'b'

-}

-- function that adds 5 to the bigger of two comparable elemenets

maksPlus5 :: (Num t, Ord t) => t -> t -> t

maksPlus5 a b = (if a > b then a else b) + 5

{-

   maksPlus5 12 34

   maksPlus5 13.4 56

-}



User defined type classes

class Negation a where

  neg :: a -> a

  

instance Negation Integer where

  neg k = k * (-1)

instance Negation Bool where

  neg True = False

  neg False = True

> neg (1 > 2)

True

> neg (21 + 45)

-66


