Functional programming languages

0

Functional programming languages

- FP program - set of "pure" functions composed from expressions
- Principle of referential transparency
- Expression/function has always the same value for the same value of its arguments, independent on context in which expression/function is evaluated
o Function - expression is assigned to the name of function for some input parameters
- Function gets a value when it is invoked by some concrete values of parameters, no side-effects
- Expression is application of a function or operator on some arguments
- Arguments can be expressions \rightarrow make function compositions, recursive functions

Functional programing languages

- Abstraction of flow of execution
o No commands and variables
- Immutable function parameters
- Immutable local variables
- Built-in mechanisms of expression evaluation, no need to know how it functions
- Conditional expression - expression value depends on value of some other sub-expression
- Recursion instead of loops
- Evaluation of FP program starts with a function application on concrete values of arguments

Characteristics of Functional PL

- FP abstracts the flow of program execution
- Shorter and more concise programs comparing to imperative programming
- Higher degree of abstraction \rightarrow smaller number of details \rightarrow smaller possibility to make errors
- Referential transparency of functions
- Smaller possibility to make errors
- No side effects
o Better formal analysis and validation of programs
- Greater possibility for program parallelization
- Subexpressions which are arguments of some other expression can be evaluated in parallel.

Higher-Order Functions

- Higher-order functions can have functions as arguments, or their results are functions or both
o Example: derivation, integral
- Example.

```
function inc(x) = x + 1
function twice(f, x) = f(f(x))
twice(inc, 5) }->
```

- Three typical higher-order functions
o map fI-apply function f on each element of its argument which is list I
- filter fI - filter list I based on logical function f
- fold flln - reduces list I according to operator (binary function) f, n is neutral element of operator f
- Functions as elements of a data structure

Strict and ne-strict semantics

- Strict semantics
o Expression (function) can be evaluated in some value only if all its subexpressions (arguments) can be evaluated in some values
o Strict/eager evaluation, call by value: expression value (function) can be evaluated after all its subexpressions (arguments) are evaluated
o Imperative programming languages are based on strict semantics, excluding logical expressions
- Non-strict semantics
- Expression (function) can be evaluated even if some its subexpressions can not be evaluated
- Non-strict (lazy) evaluation, call by need: Expression (function) is evaluated only if its value is needed
- Lazy FP languages: FP languages that support non-strict semantics (Miranda, Haskell)

Strict and non-strict semantics

O Examples.

- $(x=0)$ or $(1 / x=5)$

O for $\mathrm{x}=0$ expression has no value in strict semantics
O In non-strict semantics it has value true

- length $[2,2+4,6 / 0,2+3$ * 4$]$

O in strict semantics function can not be evaluated as third expression can not be evaluated

- In non-strict semantics elements of list are not evaluated, as function returns length of the list
- function $\operatorname{sqr}(\mathrm{x})=\mathrm{x}^{*} \mathrm{x}$, evaluate $\operatorname{sqr}(2+3)$

O Eager evaluation. $\operatorname{sqr}(2+3) \rightarrow \operatorname{sqr}(5) \rightarrow 5 * 5 \rightarrow 25$
o Lazy evaluation. $\operatorname{sqr}(2+3) \rightarrow(2+3) *(2+3) \rightarrow 5$ * $5 \rightarrow 25$

Infinite Data Structures

- Non-strict semantics offer possibility to work with infinite data structures
- Example. An infinite list of 1 s can be defined as an infinitely recursive function without arguments
function Ones = 1 : Ones
- Operator : (cons) $-x$: y form the list with head x, and tail y
- Ones $\rightarrow 1$: Ones \rightarrow 1:1: Ones $\rightarrow \ldots$
- function Head(h:t) = h
- Eager evaluation

```
Head(Ones) }->\mathrm{ Head(1:Ones) }->\mathrm{ Head(1:1:Ones)
Head(1:1:1:Ones) }->\mathrm{ Head (1:1:1:1:Ones) }->
```

- Lazy evaluation

$$
\text { Head(Ones) } \rightarrow \text { Head(1: Ones) } \rightarrow 1
$$

Lambda calculus

- Theory of functions proposed by Alonzo Church 30es of 20 century
- Lambda calculation is transformation of lambda expression using rules of lambda calculus
- lambda expression is an identifier
- If \boldsymbol{x} is identifier, \boldsymbol{e} and \boldsymbol{n} lambda expressions then following are also lambda expressions
- λx.e lambda abstraction
- e n application (apply e on argument n)
- Lambda abstraction is concept of anonymized function in FL
$0 \lambda x . x+1$
O ($\lambda \mathrm{x} \cdot \mathrm{x}+\mathrm{l}) 4 \rightarrow 5$
- $\lambda \mathrm{x} y .2 \mathrm{x}+\mathrm{y}$
$0(\lambda x y .2 x+y) 34 \rightarrow 10$

Anonymized functions

- Often used as parameters of higher-order functions
- Higher-order functions that return function as their value always return anonymized function
- Without anonymized function

$$
\begin{aligned}
& \text { function inc }(x)=x+1 \\
& \text { function twice }(f, x)=f(f(x)) \\
& \text { twice(inc, } 5) \rightarrow 7
\end{aligned}
$$

With anonymized function

$$
\begin{aligned}
& \text { function twice }(\mathrm{f}, \mathrm{x})=\mathrm{f}(\mathrm{f}(\mathrm{x})) \\
& \text { twice }(\boldsymbol{\lambda} \mathbf{x} \cdot \mathbf{x}+\mathbf{1}, 5) \rightarrow \mathbf{7}
\end{aligned}
$$

- Example of function which returns function as its value:

$$
\text { function incrementBy }(x)=\lambda y \cdot y+x
$$

Curry Functions

- Currying: definition of function with n arguments as n nested functions with one argument (Haskell Curry)
orginal function
Curry function

$$
\lambda x_{1} \quad x_{2} \quad \cdots x_{n} \cdot e
$$

$$
\left.\lambda x_{1} \cdot\left(\lambda x_{2} \cdot\left(\lambda x_{3} \cdots\left(\lambda x_{n} \cdot e\right)\right)\right) \quad \ldots\right)
$$

- Examples of Currying.
function $\operatorname{add}(x, y)=x+y$
function addCurry(x) $=\lambda y \cdot x+y$
$\begin{array}{ll}\text { addCurry (5) } & \rightarrow \lambda y \cdot 5+y \\ \text { addCurry (5)(10) } & \rightarrow(\lambda y .5+y) \quad 10 \rightarrow 15\end{array}$

Partial function application

- Let f is function with k argumenats
- Partial application of function f is application of function f with less than k argumens
- Example.
function add (x, y, z) = $x+y+z$
add $(1,2,3) \rightarrow 6$
add (1, 2) $\quad \rightarrow \lambda z .3+z$
add(1) $\quad \rightarrow$ גy z.1 + y + z
- Partial application ミ currying, evaluation, de-Currying

LISP (List Processing)

- First FP language has been developed in 60es, John McCarthy
- Only one type for everything - all data are s-expressions (symbolic expressions)
o S - constants and numbers are s-expressions
- If A and B are s-expressions then (A.B) is s-expressions - pair
- If $x_{1} x_{2} \ldots x_{n}$ s-expressions then ($\mathrm{x}_{1} \mathbf{x}_{2} \ldots \mathrm{x}_{\mathrm{n}}$) is s-expressions - list. () je empty list
- List is sequence of nested pairs

(3.	

- The same notation for data and functions/programs function definition and application are also s-expressions
- (define (functionName arg1 arg2 ... argn) expression) 三definition f
- (functionName arg1 arg2 ... argn)

三 application f

LISP (List Processing)

- Everything is s-expression
- Built-in functions for checking types of s-expressions: if sexpression is constant or number or pair or list or empty list,...
- Quote (') function
- '(+ 12) - it is s-expressions i.e. list with 3 elements
- (+ 12) - s-expressions evaluated in 3 (application of function +)
- Conditional expression
- (if c e1 e2) -- if c is true then value of whole expression is the same as value of $e 1$, if c is false then value of whole expression is the same as value of e2
- If expression represents value, contrary to if command
$(+5$ (if (> 4 5) 12)) $\rightarrow(+5($ if false 12$)) \rightarrow(+52) \rightarrow 7$
(define (fibonacci n)
(if (<n 2) n

$$
\begin{aligned}
& \text { (+ (fibonacci (- n 1)) } \\
& \text { (fibonacci (- n 2))))) }
\end{aligned}
$$

Successors of LISP

- ISWIM (if you see what I mean), Landin, ~1960
- Infix notation instead of prefix notation for arithmetic-logic expressions
- Constructions let and where local variables binding
- SECD machine
- FP, Backus, ~1970
o Functional programming as a composition of higher-order functions
- ML, Milner, ~1970
- Parametric polymorphism, type inference
- SASL, KRC \& Miranda, Turner
o Lazy evaluation, ZF expressions for lists forming, Function definition as separate cases (sequence of equations) and pattern matching, guard expressions
- Haskell, 1987, international committee
o "Grand unification of functional languages", type classes, monads

Haskell - basic elements of language -

Haskell

- "Pure" functional programming language
- Haskell B. Curry (1900 - 1982), mathematician
- Basic language characteristics
- Lazy evaluation of expressions, non-strict semantics and infinite data structures
- Static type checking, type inference mechanism
- User defined types and parametric polymorphism (generic types)
- Function definition as cases and pattern matching
- ZF expressions and list forming
- type classes and type-safe ad-hock polymorphism (operator overloading)

GHC (Glasgow Haskell Compiler) and Haskell platform

- GHC leading (open source) language implementation, part of Haskell platform
- https://www.haskell.org/platform/

- GHC has compiler and interpreter for Haskell

Types

- Each well defined expression in Haskell has a type
- e :: t - means that expression e can be evaluated in a value of type t
- Types are determined automatically during compilation time
- :t (:type) command determines expression type without its evaluation
$>2<5$
True
$>:$ t $2>5$
$2>5$:: Bool
> "Ana" ++ " voli" ++ " Milovana"
"Ana voli Milovana"
> :t "Ana" ++ " voli" ++ " Milovana"
"Ana" ++ " voli" ++ " Milovana" : : [Char]

Basic types in Haskell

- Bool
- Logical value True i False
- Char
o Characters: 'a', 'b’, 'c',...
- String ([Char])
- Strings realized as a list of characters ("a", "Mika", "Pera", "Zika", ...)
- Int
- Integers of fixed precision (30 bits, interval [-229 .. $\left.2^{29}-1\right]$)
- Integer
- Integers of arbitrary precision (represented as a list of digits)
- Float, Double
- Real numbers

Tuples

- N-tuple is sequence of N values that can be of different types
- $\left(t_{1}, t_{2}, \ldots, t_{N}\right)$ je tip N-tuple, types of components are t_{1} to t_{N}
- (False, True) :: (Bool, Bool)
- (False, 1, 'x', True) :: (Bool, Int, Char, Bool)
- Number of components is determined by length of N -tuple
- (Bool, Int) is 2-tuple (pair)
- (Char, Int, Bool) is 3 - tuple (triplet)
- Example

○ (1, (1, 'x'), True, 5) :: (Bool, (Int, Char), Bool, Int)

Built-in functions on pairs

- fst - returns the first component of pair

O fst (1, 2) $\rightarrow 1$

- snd - returns the second component of pair

0 snd $(1,2) \rightarrow 2$
-- effects of fst i snd
myfst $(x, \quad-)=x$
mysnd $\left(_, \bar{x}\right)=x$
-- extractions of triplet components

Lists

- List is a sequence of values that must be of the same type
- List can have arbitrary number of elements
- [$t]$ is type of the list which elements are of type t
- [False, True, False, False] :: [Bool]
o $[1,2,9,10]::[\operatorname{lnt}]$
- [[1, 2], [1, 2, 4], [3, 4, 6, 1, 4]] :: [[Int]]
- [(1, False, 3), (2, True, 6), (4, False, 4)] :: [(Int, Bool, Int)]
- [] is empty list

Built-in functions on lists

- head - returns the first element
o head $[1,2,3,4,5] \rightarrow 1$
o head [1] $\rightarrow 1$
- head [] \rightarrow exception
- tail - returns the tail of the list
o tail $[1,2,3,4,5] \rightarrow[2,3,4,5]$
- tail [1] \rightarrow []
- Tail [] \rightarrow exception
- !! - selects \boldsymbol{k}-th element of list (indexing starts from 0)
- $[10,20,30,40]!!0 \rightarrow 10$
- [10, 20, 30, 40] !! $2 \rightarrow 30$

Built-in functions on lists

- take - selects the first k elements
o take $3[10,20,30,40,50] \rightarrow[10,20,30]$
- drop - "removes" the first k elements
o drop $3[10,20,30,40,50] \rightarrow[40,50]$
- length - returns the length of list
- length [10, 20, 30, 40, 50] $\rightarrow 5$; length []$\rightarrow 0$
- null - check is list empty
o null [10, 20, 30, 40, 50] \rightarrow False; null [] \rightarrow True
- : (cons operator) - adds new element at the beginning of list
- $10:[20,30,40] \rightarrow[10,20,30,40]$
++ (append operator) - appends 2 lists
o $[10,20]++[30,40,50] \rightarrow[10,20,30,40,50]$

Basic types of Expressions

- Arithmetical expression - composed form arithmetic operators, evaluated in some of numerical types

○ +, -, *, /, `div`, `mod`

- $2+3$ * $4,(2+3)$ * 4
- $1 / 4$ (result is real number), 1 `div` 4 (integer division)
- Logical expressions - composed from logical operators, evaluated in some of logical values

○ \&\& (conjunction), || (disjunction), not

- Relational expressions - composed form relational operators, evaluated in some of of logical values
$0<,>,<=,>=,==$ (equal), /= (non-equal)
○ (2 < 5 \&\& "Ana" /= "Mina") || not (3 == 4)

Conditional Expression

- Conditional expression: if e then p else q
o "else branch" in conditional expression in Haskell is obligatory
- If value of e is true Then value of whole expression is equal to value of expression p, otherwise it has value of q
o Expressions p and q must be evaluated in the same type
- Examples:

O if $n>0$ then n else $-n$
Oif a > b then a else b
05 + if a > b then a else b
O (if a > b then a else b) + 5
O if mod $x 2=0$ then 2 * x else x

Nested Conditional Expressions

- Conditional expression: if e then p else q
o p and/or q also can be conditional expressions
- if $a>b$
then if $a>c$ then a else c
else if b > c then b else c
- if C >= 'a' \&\& C <= 'z'
then "Small letter"
else if C >= 'A' \&\& C <= 'Z'
then "Capital letter"
else "Not eng. alphabet letter "

Application of function on arguments

- Let f is function with k argumenats
- $f a_{1} a_{2} a_{3} \ldots a_{k}$ - application of function f on arguments a_{1} to a_{k}
- Examples of built-in numerical functions.

O truncate 12.78	evaluates in 12
O round 12.78	evaluates in 13
$0 \operatorname{gcd} 75100$	evaluates in 25

- Application of function on argumenta has higher priority than infix operators
$O f a+b$ is (f $a)+b$, and not $f(a+b)$
$O f a b+c d$ is (f a b) $+(c d)$
- x ‘ $f ` y$ is "syntactical sugar" for $f x y$

Application of function on arguments

Mathematics
$f(x)$
$f(x, y)$
$f(g(x))$
$f(x, g(y))$
$f(x) g(y)$

Haskell

$$
f x
$$

f x y
$f(g x)$
$f x(g y)$
$f x * g y$

Function Definition

- Function is defined by specifying one or more declarations ("equations") of the form fname args = expr
- Names of function and arguments begins with a small letter
- For functions defined by different cases (multiple declarations): during execution system tries to find the first declaration that can be unified (matched) with arguments in function call (pattern matching)
- To define new functions programmer can use built-in functions or previously user-defined functions
- Examples.

O double $\mathrm{x}=2$ * x
O doubleEven $\mathrm{x}=$ if $\bmod \mathrm{x} 2$ == 0 then 2 * x else x
O maks2 a b = if a > b then a else b
O maks3 a b c = maks2 (maks2 a b) c

Examples of recursive functions - different cases

```
-- factorial numbers
fact \(0=1\)
fact \(\mathrm{n}=\mathrm{n} *\) fact \((\mathrm{n}-1)\)
-- function to evaluate k-th Fibonacci
number
fib \(1=1\)
fib \(2=1\)
fib \(n=\) fib ( \(n-1\) ) + fib ( \(n-2\) )
-- function to evaluate \(\mathrm{a}^{\wedge} \mathrm{k}\) za \(\mathrm{k}>=0\)
step - \(0=1\)
step a \(1=a\)
step a \(k=a\) * step a \((k-1)\)
```

- \boldsymbol{k} - an argument in function definition is a pattern which can be matched with anything, \boldsymbol{k} is binding to the argument from function call
- _ is pattern which can be matched with anything without binding
- pattern for function parameters that we do not use efectivelly

Tail-recursion

- Function is tail-recursive if its evaluation is finished by recursive call (except of trivial cases)
- Recursive functions with accumulated parameters are tailrecursive

```
-- non-tail-recursive function
fact \(0=1\)
fact \(n=n\) * fact ( \(n\) - 1)
-- function factAcc is tail-recursive
fact' \(\mathrm{n}=\) factAcc n 1
factAcc 0 acc = acc
factAcc \(n\) acc \(=\) factAcc ( \(n-1\) ) ( \(n\) * acc)
```


Accumulation Parameter Technique

- Accumulating parameter technique offers possibility to write more efficient functions than just following its definitions
- Example. Fibonacci numbers

```
-- Fibonacci numbers by accumulating parameters technique
fib' 1 = 1
fib' 2 = 1
fib' n = fibAkum 1 1 2 n
{ -
    function fibAkum is tail-recursive and of linear
complexity
    -}
fibAkum f1 f2 cnt n =
    if n == cnt
        then f2
        else fibAkum f2 (f1 + f2) (cnt + 1) n
```


Function Type

- By function type we specify types of arguments and return values of the function
- Function type need not be explicitly specified as we define a function, it will be determined by Haskell built-in mechanism.
- $f:: x$-> y-it is the function type of one argument, it maps elements of type x in elements of type y
- Names of types always begins with a capital letter

```
-- function type
fib :: Int -> Int
-- function definition
fib 1 = 1
fib 2 = 1
fib n = fib (n - 1) + fib (n - 2)
```


Function Type

- All Haskell functions are Curry functions i.e. with one argument, they are Currying implicitly, can be partial applied
- Function type with two arguments $a->(b->c)$
- Function type with three arguments a -> (b -> (c -> d))
- Separator -> is right associative so parentheses can be deleted
- Function type with two arguments: $a->b->c$
- Function type with three arguments: $a->b->c->d$
- ...
- Function type with k arguments: $x_{1}->x_{2}->x_{3}->\ldots->x_{k}->y$
- Application of function on arguments:
$\left.f a_{1} a_{2} a_{3} \ldots a_{k} \equiv\left(\ldots\left(\left(f a_{1}\right) a_{2}\right) a_{3}\right) \ldots a_{k}\right)$
(1) -- function that evaluates $a^{\wedge} k$ za $k>=0$ step : : Int -> Int -> Int
step $-0=1$
step $\bar{a} 1=a$
step $a k=a *$ step $a(k-1)$
-- function that multiplies three numbers
mule : : Int -> Int -> Int -> Int mule $x y z=x$ * y * z
-- function of one argument realised
-- by partial application of function
mil
mul_3_5 $:: \operatorname{Int}->$ Int
mul_3_5 $=\operatorname{mul} 35$
> mul_3_5 10
150

Guarded Expressions (guards)

- Function can be defined using guarded expressions i.e. guards fname args | $g_{1}=$ expr $_{1}$
| $\mathrm{g}_{2}=$ expr $_{2}$
| $g_{k}=\operatorname{expr}_{k}$
| otherwise $=$ expr。
desc c

$$
\begin{aligned}
& \text { | c >= 'a' \&\& c <= 'z' = "Small letter" } \\
& \text { c >= 'A' \&\& c }<=\text { 'Z' = "Capital letter" } \\
& \text { c >= '0' \&\& c <= '9' = "Digit" } \\
& \text { otherwise = "Special character" }
\end{aligned}
$$

char1 n

$$
\begin{aligned}
& \mathrm{n}<0=\text { "negative" } \\
& \mathrm{n}==0=\text { "zero" } \\
& \text { | otherwise = "positive" }
\end{aligned}
$$

Let Expressions

- Let expression allows evaluation of an expression in extended local environments
- let <bindings> in expr
- let

$$
\mathrm{v}_{1}[\text { args }]=\operatorname{expr}_{1} \quad--[] \text { optional }
$$

$$
\mathrm{v}_{\mathrm{k}}\left[\text { args] }=\operatorname{expr}_{\mathrm{k}}\right.
$$

in expr

- Identifiers $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}$ are variables or functions
- In expression expr identifiers $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}$ can appear, their values are obtained by evaluation of corresponding expressions
- Identifiers $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathbf{k}}$ are local, not visible outside the let block
- Values of let expression is the same as value of expression expr

Let Expressions

- let

$$
\begin{aligned}
& \mathbf{v}_{1}[\text { args }]=\text { expr }_{1} \\
& \mathbf{v}_{2}[\text { args }]=\text { expr }_{2}
\end{aligned}
$$

$$
\mathrm{v}_{\mathrm{k}}[\text { args }]=\operatorname{expr}_{\mathrm{k}}
$$

in expr

- In this case $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathbf{k}}$ must be identically indented...
- ... Or explicitly grouped
- let \{

```
            v
            v
```

 \(\mathrm{v}_{\mathrm{k}}\) [args] \(=\operatorname{expr}_{\mathrm{k}}\);
 \} in expr

Let Expressions

```
foo a b c d =
    let
    y = a * b
    f x = (x + y) / y
    fact }x=\mathrm{ if }x==0\mathrm{ then 1 else }x*\operatorname{fact (x - 1)
    z = a * k
    k = b
    in f c + fact d + z
```

- Notice:
- In the definition of identifier f , identifier y is used, it is defined in let block previously
o fact is recursive function
- In the definition of identifier z identifier, k is used, it will be later definide in let block
- For definition some identifiers in let block we can use all identifiers from let block + recursive definitions are allowed

Let Expressions

cylinderSurface rh =
let

> base $=r \star r \star 3.14$ wrapper $=2 \star$ r w $3.14 \star h$
in 2 * base + wrapper
-- Function that returns pair of two numbers
quadraticEquation a bc = let
$\mathrm{t}=\mathrm{b} * \mathrm{~b}-4$ * a * c
s $=$ sqrt t
$\mathrm{f} 1=(-\mathrm{b}+\mathrm{s}) /(2$ * a)
$\mathrm{f} 2=(-\mathrm{b}-\mathrm{s}) /(2 \star \mathrm{a})$
in (fl, fl)

Let Expressions

$$
\begin{aligned}
& \text { prime } 2=\text { True } \\
& \text { prime } x=
\end{aligned}
$$

let
-- operator . is composition of functions
-- fromIntegral konverts Int in wider class
-- of numbers Num
-- it is necessary to apply sqrt function
limit $=$ (round . sqrt . fromIntegral) x
noDivisors d numb
| numb > limit $=$ True
| d `mod` numb == $0=$ False
| otherwise $\quad=$ noDivisors d (numb +1)
in
noDivisors x 2

Where block

- Where block also allows evaluation of an expression in environment extended by different definitions (identifiers, functions)
- Differences between where and let block
- new identifiers and assigned expressions are given after the "main" expression/function
o where is not expression but syntactical construction (has no value)
- where can be introduced after guarded expressions
bar a b c d =
f $c+$ fact $d+z$
where

$$
\begin{aligned}
& y=a * b \\
& f x=(x+y) / y \\
& \text { fact } x=\text { if } x==0 \text { then } 1 \text { else } x * \text { fact }(x-1) \\
& z=a * k \\
& k=b
\end{aligned}
$$

Where block

- Example of where block introduced after guarded expression
-- weight in kg, hight in m
-- operator
-- take care of identation!
bodyMassIndex weight height

```
            | bmi <= skinny = "low"
    | bmi <= normal = "normal"
    | bmi <= fat = "high"
        otherwise = "very high"
    where bmi = weight / height ^ 2
        skinny = 18.5
        normal = 25.0
        fat = 30.0
```


Case expression

- Conditional expression based on pattern matching case expr of
pattern ${ }_{1} \rightarrow$ expr $_{1}$
pattern $_{k} \rightarrow$ expr $_{\mathrm{k}}$
- Value of expression is expr $_{p}$ where pattern ${ }_{p}$ is the first pattern which can be matched with expr

```
-- take care of identation!
fib' \(k=\)
    case \(k\) of
        1 -> 1
        \(2->1\)
        _ \(->\) fib' \((k-1)+\) fib' \((k-2)\)
```


Operators

- Operators are binary functions that can be applied in infix and prefix forms
- For operator \$ appropriate function is written as (\$)
- $2+3$ (infix) is equivalent with (+) 23 (prefix)

```
-- definition of operator as function
    \((\backslash+)\) : Bool -> Bool -> Bool
    \((\backslash+)\) False \(\mathrm{b}=\mathrm{b}\)
    \((\backslash+)\) True _ = True
-- pattern matching definition of operator
    \((\backslash *)\) : : Bool -> Bool -> Bool
True \(\backslash * \mathrm{~b}=\mathrm{b}\)
False ** _ \(^{*}\) False
twoDigits \(\mathrm{x}=((\mathrm{x}>=10) \quad \backslash *(\mathrm{x}<100)) \quad \backslash+\)
        \(((\mathrm{x}<=-10) \quad \backslash * \quad(\mathrm{x}>=-100))\)
```


Anonymous functions

- Anonymous functions in Haskell are defined as follows. largs -> expr
$0 \backslash x->x+1$
O ($\backslash \mathrm{x}->\mathrm{x}+1$) 5 is evaluated in 6

O \x y -> x + y
O ($\backslash \mathrm{x} \mathrm{y} \rightarrow \mathrm{x}+\mathrm{y}$) 56 is evaluated in 11

O mult3 = \x y z -> x * y * z
omult3 123 is evaluated in 6

Partially applied operators

- Operators are binary functions and can be partially applied

Partial application	Result
$(+1)$	$\backslash x->x+1$
$(1+)$	$\backslash x->1+x$
$(==5)$	$\backslash x \rightarrow x==5$
$(5==)$	$\backslash x \rightarrow 5==x$
$(/=5)$	$\backslash x->x>5$
(>5)	$\backslash x->5>x$
$(5>)$	

Higher-order Functions

- Higher-order functions can have functions as arguments, or their results are functions or both

```
-- higher-order function
apply2 f x = f (f x)
> apply2 succ 5
7
> apply2 (+3) 10
16
> apply2 reverse "Ana voli Milovana"
"Ana voli Milovana"
> apply2 (++ " kul") "Haskell"
"Haskell kul kul"
> apply2 (10:) [1, 2, 3, 4]
[10,10,1,2,3,4]
```


Map Function

- Return as result list applying function (given as first argument) on each element of list given as the second argument
$>\operatorname{map}(+1) \quad[1,2,3,4]$ [2,3,4,5]
$>\operatorname{map}(==1) \quad[1,2,3,4]$
[True,False,False,False]
> map length ["foo", "bar", "mika", "ab"] [3,3,4,2]
$>\operatorname{map}(\backslash x->x+3)[1,2,3,4]$
[4,5,6,7]

Type classes

- Type class is collection of types which perform operations adequate for that Type class
- Type can belong to one or more type classes, in this case it can apply all operations adequate for these type classes
- Type classes allows ad-hock polymorphism (operator overloading)
- Examples of built-in Type classes
- Eq: Types that realize operations (==) i (/=)
- Ord: Types that realize operations (<), (<=), (>) i (>=)
- Num: All types that realize arithmetic operations
- Polymorph functions can have some restrictions depending on Type class

O (+) : : Num a $=>$ a $->$ a $->a$
O (^) : : (Num a, Integral b) $=>$ a $->\mathrm{b}->\mathrm{a}$

Type classes

-- function that gives the bigger of two comparable elemenets maks : : (Ord t) $=>$ t $->t->t$ maks $\mathrm{a} b=$ if $\mathrm{a}>\mathrm{b}$ then a else b
\{-

```
    maks "Ana" "Mika"
```

 maks 1234
 maks 13.456
 maks False True
 maks 'a' 'b'
 - \}
-- function that adds 5 to the bigger of two comparable elemene maksPlus5 :: (Num t, Ord t) $=>\mathrm{t}->\mathrm{t}->\mathrm{t}$ maksPlus5 $\mathrm{a} \mathrm{b}=($ if $\mathrm{a}>\mathrm{b}$ then a else b$)+5$
\{-
maksPlus5 1234
maksPlus5 13.456
- \}

User defined type classes

class Negation a where neg : : a -> a
instance Negation Integer where neg $k=k *(-1)$
instance Negation Bool where

> neg True = False
neg False = True
$>\operatorname{neg}(1>2)$
True
$>$ neg $(21+45)$
-66

