Functional prog
languag

Functional programming languages

® P program — set of “pure” functions composed from
expressions

o Principle of referential transparency

Expression/function has always the same value for the same
value of its arguments, independent on context in which
expression/function is evaluated
O Function — expression is assigned to the name of function
for some input parameters

o Function gets a value when it is invoked by some concrete
values of parameters, no side-effects

O Expression is application of a function or operator on
some arguments

Arguments can be expressions - make function
compositions, recursive functions

RS STy,
& w0,
g 2
— st
o =0 I =
. j"r_, JC .
(9]9) .
(4 -13')nr\<\.;.
C 5
P ANTE

Functional programing languages

® Abstraction of flow of execution
o No commands and variables

Immutable function parameters

Immutable local variables

o Built-in mechanisms of expression evaluation, no need
to know how it functions

o Conditional expression — expression value depends on
value of some other sub-expression

o Recursion instead of loops

® Evaluation of FP program starts with a function application
on concrete values of arguments

Characteristics of Functional PL

® FP abstracts the flow of program execution

O Shorter and more concise programs comparing to imperative
programming

o Higher degree of abstraction - smaller number of details -
smaller possibility to make errors

® Referential transparency of functions

o Smaller possibility to make errors
No side effects

o Better formal analysis and validation of programs

o Greater possibility for program parallelization

Subexpressions which are arguments of some other expression can
be evaluated in parallel.

LAS STy,
o;‘\ T "'/J
& |

Higher-Order Functions

® Higher-order functions can have functions as arguments,
or their results are functions or both
o Example: derivation, integral

® Example.
function inc(x) = x + 1
function twice (f, x) = f£(f(x))
twice (inc, 5) =2 7

® Three typical higher-order functions
o map f | —apply function f on each element of its argument which is list |
o filter f | — filter list | based on logical function f

o fold f I n —reduces list | according to operator (binary function) f, n is
neutral element of operator f

® Functions as elements of a data structure

,

Strict and ne-strict semantics o

® Strict semantics

o Expression (function) can be evaluated in some value only if all its
subexpressions (arguments) can be evaluated in some values

o Strict/eager evaluation, call by value: expression value (function)
can be evaluated after all its subexpressions (arguments) are
evaluated

O Imperative programming languages are based on strict
semantics, excluding logical expressions

® Non-strict semantics

® Expression (function) can be evaluated even if some its
subexpressions can not be evaluated

® Non-strict (lazy) evaluation, call by need: Expression (function) is
evaluated only if its value is needed

® Lazy FP languages: FP languages that support non-strict
semantics (Miranda, Haskell)

Strict and non-strict semantics
O Examples.
® Xx=0)or(1/x=5)
O for x = 0 expression has no value in strict semantics

O In non-strict semantics it has value true

® length[2,2+4,6/0,2+3*4]

O in strict semantics function can not be evaluated as third expression can not
be evaluated

O In non-strict semantics elements of list are not evaluated, as function returns
length of the list

® function sgr(x) = x * x, evaluate sqgr(2 + 3)
O Eager evaluation. sqr(2+ 3) 2 sqr(5) 2> 5*5-> 25
O Lazy evaluation.sqr(2+3) 2> (2+3)*(2+3)>5*5 > 25

Infinite Data Structures

® Non-strict semantics offer possibility to work with infinite data
structures

® Example. An infinite list of 1s can be defined as an infinitely recursive
function without arguments
function Ones =1 : Ones

Operator : (cons) — x : y form the list with head x, and tail y
Ones—>1:0nes—>1:1:0nes - ...

® function Head(h : t) =h

® Eager evaluation

Head(Ones) - Head(1 : Ones) - Head(1:1: Ones)
> Head(1:1:1:0nes) >Head(1:1:1:1:0nes) > ...

® Lazy evaluation
Head(Ones) - Head(1 : Ones) 2> 1

& \:\ e 2

g (o]

_ St
7% ¢, ,ﬁf :

(4 -13');5]‘?\(\‘_;:
b d I I Opy ppies

® Theory of functions proposed by Alonzo Church 30es of 20 century

® Lambda calculation is transformation of lambda expression using
rules of lambda calculus

o lambda expression is an identifier

o If x is identifier, e and n lambda expressions then following are
also lambda expressions

AXx.e lambda abstraction
en application (apply e on argument n)

® Lambda abstraction is concept of anonymized function in FL
OAx.x + 1

O (Ax.x + 1) 4 > 5
O AX v.2x + vy

O (Ax v.2x + vy) 3 4 =2 10

ce'-‘“ -*’:_jl Uy,
_ St
v WO

‘ \ . d f t = OrpAnte

® Often used as parameters of higher-order functions

® Higher-order functions that return function as their value
always return anonymized function

® Without anonymized function
function inc(x) = x + 1
function twice (f, x) = f£(f(x))
twice (inc, 5) =2 7
With anonymized function
function twice(f, x) = f(f(x))
twice(Ax.x + 1, 5) =2 7

® Example of function which returns function as its value:
function incrementBy(x) = Ay.y + X

T\?-: 5 ;{‘r,
,\‘:'@ WMy “/g
_ =]
T XX T
v 4, 4) (]9} (s “
. 60;;::Sg_‘t"‘h?

® Currying: definition of function with n arguments as n
nested functions with one argument (Haskell Curry)

orginal function AX, X, ... X_.€
Curry function AX; o (A%, (A5 oo (Ax,.e))) ..L)

® Examples of Currying.
function add(x, y) = x + vy

function addCurry(x) = Ay.X + vy

addCurry (5) 2 Ayv.5 + vy
addCurry (5) (10) =2 (Ay.5 + y) 10 = 15

Partial function application

® Letfis function with k argumenats

® Partial application of function f is application of function f
with less than k argumens

® Example.
function add(x, vy, z) = x + y + zZ
add (1, 2, 3) =2 6
add (1, 2) 2 Az.3 + 7
add (1) 2 Ay z.1 + v + z

® Partial application = currying, evaluation, de-Currying

+A> STy,
Q_"\ W, {’/J/
& NI/ .
Ay ;:
S aemim
C*
(4

7% 5 \jj "
LR
Op -

LANTE

LISP (List Processing)

® First FP language has been developed in 60es, John McCarthy

® Only one type for everything — all data are s-expressions
(symbolic expressions)

O S - constants and numbers are s-expressions
o If A and B are s-expressions then (A . B) is s-expressions - pair

o If X; X, ... X, S-expressions then (x; X, ... X,,) IS s-expressions - list. () je
empty list

List is sequence of nested pairs

(1234)=(1.(2.(3.(4.()))

® The same notation for data and functions/programs —
function definition and application are also s-expressions

o (define (functionName arg1 arg2 ... argn) expression) = definition f
o (functionName arg1 arg2 ... argn) = application f

= z
P <% ,ij:

LISP (List Processing)

® Everything is s-expression

o Built-in functions for checking types of s-expressions: if s-
expression is constant or number or pair or list or empty list,...

o Quote (‘) function
‘(+12) —itis s-expressions i.e. list with 3 elements
(+12) - s-expressions evaluated in 3 (application of function +)

® Conditional expression

o (if c el e2) --if cis true then value of whole expression is the same as

value of el, if c is false then value of whole expression is the same as
value of e2

o If expression represents value, contrary to if command
(+5@0f(>45)12) > (+5(ffalsel2) > (+5 2)>7
(define (fibonacci n)

(1f (< n 2) n
(+ (fibonacci (- n 1))
(fibonacci (- n 2)))))

Successors of LISP

® ISWIM (if you see what | mean), Landin, ~1960

o Infix notation instead of prefix notation for arithmetic-logic expressions
o Constructions let and where local variables binding
o SECD machine

® P, Backus, ~1970
o Functional programming as a composition of higher-order functions

® ML, Milner, ~1970
o Parametric polymorphism, type inference

® SASL, KRC & Miranda, Turner

o Lazy evaluation, ZF expressions for lists forming, Function definition as
separate cases (sequence of equations) and pattern matching, guard
expressions

® Haskell, 1987, international committee
o “Grand unification of functional languages”, type classes, monads

Hask

- basic elem
languag

+A> STy,
é_,,\ i J,,ij
Ay ;:
_ Femt
2% JCE
: W0 "
4 "fz:)"] ﬂo..,\"
| I OPLANTE

® “Pure” functional programming language
® Haskell B. Curry (1900 — 1982), mathematician
® Basic language characteristics

o Lazy evaluation of expressions, non-strict semantics and
Infinite data structures

O Static type checking, type inference mechanism

O User defined types and parametric polymorphism (generic
types)

o Function definition as cases and pattern matching

o ZF expressions and list forming

O type classes and type-safe ad-hock polymorphism (operator
overloading)

GHC (Glasgow Haskell Compiler) and Haskell platform

® GHC leading (open source) language implementation, part of Haskell
platform

® https://www.haskell.org/platform/

Haskell Platform

Haskell with batteries included

A multi-OS distribution

designed to get you up and running quickly, making it easy to focus on using Haskell. You get:

¢ the Glasgow Haskell Compiler
e the Caba

e the Stack tool for developing projects

e support for profiling and code coverage analysis

e 35 core & widely-used packages

® GHC has compiler and interpreter for Haskell

https://www.haskell.org/platform/

S Yo,
AY Q
7% ¢, ,ij:
4 1IN o

® Each well defined expression in Haskell has a type

® c .. t —means that expression e can be evaluated in a value of
type t
® Types are determined automatically during compilation time

® :t (:type) command determines expression type without its

evaluation
> 2 < 5

True

> :t 2 > 5

2 > 5 :: Bool

> "Ana" ++ " voli" ++ " Milovana"
"Ana voli Milovana"

> :t "Ana" ++ " wvoli" ++ " Milovana"

"Ana" ++ " voli" ++ " Milovana" :: [Char]

Basic types in Haskell

® Bool

O Logical value True i False
® Char

o Characters: ‘a’, ‘b’, ‘'c,...
® String ([Char])

o Strings realized as a list of characters (“a”, “Mika”, “Pera”, “Zika”, ...)
® Int

o Integers of fixed precision (30 bits, interval [-22° .. 22°-1)])
® Integer

o Integers of arbitrary precision (represented as a list of digits)
® Float, Double

O Real numbers

(WAS ST,
S w0,
S %
_ St
P OO
4 1 N e
I P ANTE

® N-tuple is sequence of N values that can be of different types

® (t,,t,, ..., ty) Je tip N-tuple, types of components are t; to t
o (False, True) :: (Bool, Bool)
o (False, 1, X/, True) :: (Bool, Int, Char, Bool)

® Number of components is determined by length of N-tuple
o (Bool, Int) is 2-tuple (pair)
O (Char, Int, Bool) is 3- tuple (triplet)

® Example
o (1, (1, 'x), True, 5) :: (Bool, (Int, Char), Bool, Int)

_

Built-in functions on pairs

® fst — returns the first component of pair

O fst

(1,

2)

2> 1

® snd — returns the second component of pair

O snd (1, 2) =2 2
—-— effects of

myfst (x,) =
mysnd (, X) =
-—- extractions
fst3 (x, .,)
snd3 (_, x, _)
thr3 (, , X)

fst 1 snd
X
X

of triplet components
= X
= X
= X

= E
P e S
>S9 3 =
' ?;"(JU‘JENC.‘
1IN
)"’I»’\!\'\"‘

Lists
® Listis a sequence of values that must be of the same type

® List can have arbitrary number of elements

® [t] is type of the list which elements are of type t
o [False, True, False, False] :: [Bool]

o [1, 2,9, 10] :: [Int]

o[[L, 2], [1, 2, 4], [3, 4, 6, 1, 4]] :: [[Int]]

o

(1, False, 3), (2, True, 6), (4, False, 4)] :: [(Int, Bool, Int)]

® [] is empty list

Built-in functions on lists
® head —returns the first element

o head|[1,2,3,4,5]2> 1
O head[1] 2 1

O head [] = exception

® tail —returns the tail of the list
o tail [1, 2, 3,4, 5] > [2, 3, 4, 5]
o tail [1] 2]
o Tail [] = exception
® !! —selects k-th element of list (indexing starts from 0)
o [10, 20, 30,4011 0> 10
o [10, 20, 30, 40] 1 2 > 30

Built-in functions on lists
® take — selects the first k elements
o take 3[10, 20, 30, 40, 50] - [10, 20, 30]
® drop — “removes” the first k elements
o drop 3 [10, 20, 30, 40, 50] - [40, 50]
® |ength —returns the length of list
o length [10, 20, 30, 40, 50] = 5; length [] = O
® null —check is list empty
o null [10, 20, 30, 40, 50] - False; null [] 2> True
® : (cons operator) —adds new element at the beginning of list
o 10:[20, 30, 40] - [10, 20, 30, 40]
® ++ (append operator) —appends 2 lists
o [10, 20] ++ [30, 40, 50] - [10, 20, 30, 40, 50]

Basic types of Expressions

® Arithmetical expression —composed form arithmetic operators,
evaluated in some of numerical types

o +,-,*/, dv, mod
02+3*4,(2+3)*4
o 1/ 4 (result is real number), 1 div 4 (integer division)

® Logical expressions —composed from logical operators,
evaluated in some of logical values

O && (conjunction), || (disjunction), not

® Relational expressions —composed form relational operators,
evaluated in some of of logical values

0 <, >, <=, >=, == (equal), /= (non-equal)
O (2<5 &&"Ana" /="Mina") || not (3 ==4)

Conditional Expression
e Conditional expression: if e then p else

O “else branch” in conditional expression in Haskell is
obligatory

o If value of e Is true Then value of whole expression is equal to
value of expression p, otherwise it has value of q

O Expressions p and g must be evaluated in the same type

® Examples:

Oif n > 0 then n else —n
Oif a > b then a else b

O5 + 1f a > b then a else b
O (1f a > b then a else b) + 5

Oif mod x 2 == 0 then 2 * x else X

Nested Conditional Expressions
® Conditional expression: if e then p else

o p and/or g also can be conditional expressions

® if a >b
then 1f a > ¢ then a else c

else 1f b > ¢ then b else c

® if ¢ >= 'a' && ¢c <= 'z"
then “Small letter®™
else 1f ¢ >= 'A' && ¢ <= 'z}
then “Capital letter®™
else “"Not eng. alphabet letter "

Application of function on arguments

® Letfis function with k argumenats

e fa, a, a;... a —application of function f on arguments a, to a,

® Examples of built-in numerical functions.

O truncate 12.78 evaluates in 12
O round 12.78 evaluates 1n 13
O gcd 75 100 evaluates 1n 25

® Application of function on argumenta has higher priority
than infix operators
Of a + b is (f a) + b,andnot £(a + b)

Of ab+cdis(f ab) + (c d)

® x £ y is“syntactical sugar’for £ x vy

NS STy
& OOIO
- =
E‘_—h =
SHe v oz
. -a')(fu&(g .
T IOV 2

O‘DIANT?S;

Application of function on arguments

Mathematics Haskell

’ . . . dgjﬁr’:\g’i\:
Function Definition

® Function is defined by specifying one or more declarations
(“equations”) of the form fname args = expr

® Names of function and arguments begins with a small letter

® For functions defined by different cases (multiple declarations):
during execution system tries to find the first declaration that
can be unified (matched) with arguments in function call
(pattern matching)

® To define new functions programmer can use built-in functions or
previously user-defined functions

® Examples.
O double x = 2 * x
O doubleEven x = 1f mod x 2 == 0 then 2 * x else x
O maks2 a b = if a > b then a else Db

O maks3 a b ¢ = maks?2 (maks?2 a b) c

AVAS

= N O,
_{;‘k N/ /?F
Z smmm
= =
g .;%"{Ju‘%\c{:
T NS 2

Examples of recursive functions - different cases

—— factorial numbers
fact 0 =1
fact n = n * fact (n - 1)

—— function to evaluate k-th Fibonacci

number
fib 1 =1
fib 2 =1

fib n = fib (n - 1) + fib (n - 2)

—-— function to evaluate a“k za k >= 0
step 0 =1
step a 1 = a
step a k = a * step a (k - 1)
® k -an argument in function definition is a pattern which can be
matched with anything, k is binding to the argument from function call

® is pattern which can be matched with anything without binding
o pattern for function parameters that we do not use efectivelly

_

Tall-recursion

® Function is tail-recursive if its evaluation is finished by
recursive call (except of trivial cases)

® Recursive functions with accumulated parameters are tail-
recursive

—— non—-tail-recursive function
fact 0 = 1
fact n = n * fact (n - 1)

—-— function factAcc 1s tail-recursive
fact' n = factAcc n 1

factAcc 0 acc = acc

factAcc n acc = factAcc (n - 1) (n * acc)

PR o

= L‘C_, I °
1IN o

O"b-‘f ANT "_t-\ :

.y Vfﬁ.
e

Accumulation Parameter Technique

® Accumulating parameter technique offers possibility to write more
efficient functions than just following its definitions

® Example. Fibonacci numbers

—-— Fibonacci numbers by accumulating parameters technique
fib' 1 =1

fib' 2 =1

fib' n = fibAkum 1 1 2 n

{_
function fibAkum is tail-recursive and of linear
complexity
-}
fibAkum f1 f2 cnt n =
if n == cnt
then f2
else fibAkum f2 (f1 + £2) (cnt + 1) n

\\ [S ,r{,_/
."-S':\ o J/Q
5 Cammas 2
<% N ;?C :
4 1IN o
O‘“f. A NTES

® By function type we specify types of arguments and return
values of the function

® Function type need not be explicitly specified as we define a
function, it will be determined by Haskell built-in mechanism.

® f:: x->y—1itisthe function type of one argument, it maps
elements of type x in elements of type y

® Names of types always begins with a capital letter

-— function type
fib :: Int -> Int

—— function definition

fib 1 =1
fib 2 =1
fib n = fib (n - 1) + fib (n - 2)

& "o If""/f

= %

7 e, c

_ %, C:
4 IR e
F t . T OrpAnte

® All Haskell functions are Curry functions i.e. with one argument,
they are Currying implicitly, can be partial applied

o Function type with two arguments a -> (b ->)
o Function type with three arguments a -> (b -> (c -> d))
® Separator ->is right associative so parentheses can be deleted
o Function type with two arguments: a->b -> ¢
o Function type with three arguments: a->b->c->d
o ...
O Function type with k arguments: X; -> X, -> X3 -> ... -> X, -> Y
® Application of function on arguments:

fa,a,as...a,=(...((fay) a,) a3) ... a,)

step :: Int -> Int -> Int
step 0 =1

step a 1 = a
step a k = a * step a (k - 1)

—— function that multiplies three

numbers
mul :: Int —-> Int -> Int -> Int

mul x vy z = xXx * y * zZ

—— function of one argument realised
—-— by partial application of function

mu .l
mul 3 5 :: Int -> Int
mul 3 5 = mul 3 5

> mul 3 5 10
150

Ky
PR . S

> Iz
? XS

% —-— function that evaluates a“k za k >= 0 =

1IN
Oy AN

7
A
f\‘ﬂo\

A
Y %
=N Yd b ek
y ::‘)(-’{Ju‘-)(\c{;
’fzoo Ay o°
ﬁ;_ANﬁ.‘&

Guarded Expressions (guards)

® Function can be defined using guarded expressions i.e. guards
fname args | g; = expr;

| g, = expr,

| g = expry
| otherwise = expr_

desc c
| ¢ >= 'a' && ¢ <= '"z' = "Small letter"
| ¢ >= '"A'" && c <= 'Z'" = "Capital letter"
| ¢ >= '0'" && ¢ <= '9" = "Digit"
| otherwilise = "Special character"
charl n
| n < 0 = "negative"
| n == 0 = "zero"

| otherwise = "positive"

NS Siy,
-\\\ . "'/J

Let Expressions

® Let expression allows evaluation of an expression in extended local
environments

® let <bindings> in expr

® let
v, [args] = expr, -—- [] optional
v, [args] = expr,
in expr

® |dentifiers vy, v,, ..., V|, are variables or functions

® |n expression expr identifiers v, v,, ..., V, can appeatr, their values
are obtained by evaluation of corresponding expressions

® |dentifiersv,, v,, ..., vV, are local, not visible outside the let block

® Values of let expression is the same as value of expression expr

_\\,.\!'s 51,
) h o,

\‘5} LI /?F

Z ammm =

>1C z

) ::‘;-’(Ju‘%\c *

OR8N

Let Expressions

® let
v, [args] = expr,
v, [args] = expr,
v, [args] = expr,
in expr

® In this case vy, v,, ..., vV, must be identically indented...

® ... Or explicitly grouped

® let {
v, [args] = expr,; -- now indentation is not important
v, [args] = expr,;
v, [args] = expr,;

} in expr

Let Expressions |

foo a b c d=

let
y =a * Db
f x=(x+vy) /vy
fact x = 1f x == 0 then 1 else x * fact (x - 1)
Z = a * k
k =D

in f ¢ + fact d + z

® Notice:

o In the definition of identifier f, identifier y is used, it is defined in let block
previously

o fact s recursive function
O In the definition of identifier z identifier, k is used, it will be later definide
In let block

® For definition some identifiers in let block we can use all
Identifiers from let block + recursive definitions are allowed

£,
A
20

s
Let Expressions

cylinderSurface r h =
let
base = r * r * 3.14
wrapper= 2 * r * 3.14 * h
in 2 * base + wrapper

—— Function that returns pair of two

numbers
quadraticEquation a b ¢ =
let
t =Db * b -4 * a * c
S = sgrt t
fl = (b + s) / (2 * a)
f2 = (-b - s) / (2 * a)

in (fl1, £2)

= 3
.g Bl
Oﬁ_ANﬁ.‘&'

Let Expressions

prime 2 = True
prime x =
let
—— operator . 1s composition of functions

—— fromIntegral konverts Int in wider class

—— of numbers Num
—— 1t 1s necessary to apply sgrt function

limit = (round . sgrt . fromIntegral) x
noDivisors d numb
| numb > limit = True
| d "mod numb == 0 = False
| otherwise = noDivisors d (numb + 1)
in

nobDivisors xX 2

53'“\\ " H ;{%’o

S mma 2

7% 5 ;?C :

’ "fz’)’{‘f })WC..;
Op T

® \Where block also allows evaluation of an expression in environment
extended by different definitions (identifiers, functions)

® Differences between where and let block

o new identifiers and assigned expressions are given after the “main”
expression/function

o where is not expression but syntactical construction (has no value)

o where can be introduced after guarded expressions
bar a b ¢ d =
f ¢ + fact d + z

where
vy = a * Db
fx=(x+vy) /vy
fact x = 1f x == 0 then 1 else x * fact (x - 1)

7 = * k

a
k =Db

GRS STy,
‘{&" N O’o

— soems Lt
v -,%—f‘-‘ﬁ;g’%%i\:
Where block

® Example of where block introduced after guarded expression

-— welght 1in kg, hight 1n m
-— operator ~

-—- take care of identation!
bodyMassIndex weight height

| bmi <= skinny = "low"

| bmi <= normal = "normal"

| bmi <= fat = "high"

| otherwise = "very high"

where bmi = welght / height © 2
skinny = 18.5
normal = 25.0
fat = 30.0

£,
D)

SN s,
— S
Case expression

® Conditional expression based on pattern matching
case expr of
pattern, = expr,

pattern, = expr,

O Value of expression Is expr, where pattern,, is the first pattern
which can be matched with expr

—— take care of identation!
fib' k =
case k of
1 -> 1
2 => 1
-> fib' (k - 1) + fib' (k - 2)

_

Operators

prefix forms

o For operator $ appropriate function is written as ($)

o 2 + 3 (infix) is equivalent with (+) 2 3 (prefix)

-- definition of operator as function

(\+) :: Bool -> Bool -> Bool
(\+) False b = b
(\+) True _ = True

—-- pattern matching definition of operator

(*) :: Bool -> Bool -> Bool

True * b =Db

False * = False

twoDigits x = ((x >= 10) * (x < 100)) \+

((x <= =-10) * (x >= -100))

® Operators are binary functions that can be applied in infix and

_@b"-‘\\ N::VZT-IO‘)/O
— S
Anonymous functions

® Anonymous functions in Haskell are defined as follows.
\args -> expr

oO\x > x + 1

O (\x -> x + 1) 5 Isevaluated in 6

O\xy >x+y

O(\x vy ->x + vy) 5 6 isevaluatedin 11

Omult3 = \xy z -> x *y * z

Omult3 1 2 3 isevaluatedin 6

‘gllllllllllllllllll-'

Partially applied operators

® Operators are binary functions and can be partially applied

partial application

(+ 1) \x -> x + 1
(1 +) \x => 1 + x
(== 5) \x -> x == 5
(5 ==) \x => 5 == x
(/= 5) \x => x /=5
(> o) \x -=> x > 5
(5 >) \X —=> 5 > X

&
4‘&

Higher-order Functions

® Higher-order functions can have functions as arguments, or their
results are functions or both

—-— higher-order function
apply2 £ x = £ (f x)

> applyZ2 succ 5

7

> apply2 (+3) 10

16

> applyZ2 reverse "Ana voll Milovana"
"Ana voli Milovana"

> apply2 (++ " kul") "Haskell"
"Haskell kul kul"

> apply2 (10:) [1, 2, 3, 4]
(10,10,1,2,3,4]

Q}._,\\ -:\:’: '-’f- ”;()/r_

Ky]

7%, CF

’ LA s
u 60!) P

I\/Iap Function

® Return as result list applying function (given as first
argument) on each element of list given as the second
argument

> map (+1) [1, 2, 3, 4]
[2,3,4,5]

> map (==1) [1, 2, 3, 4]
[True,False,False,False]

> map length [" foo" , "bar" , "mika" , "ab"]
[3,3,4,2]

>map (\x -> x + 3) [1, 2, 3, 4]
[4,5,6,7]

AY Q

2 W €T

(4 1, ');5]‘}3:'\)(\;
T 60{)!) \H‘H

ype classes

® Type class is collection of types which perform operations
adequate for that Type class

® Type can belong to one or more type classes, in this case it can
apply all operations adequate for these type classes

® Type classes allows ad-hock polymorphism (operator overloading)
® Examples of built-in Type classes

O EQ: Types that realize operations (==) i (/=)

o Ord: Types that realize operations (<), (<=), (>) i1 (>=)

o Num: All types that realize arithmetic operations

® Polymorph functions can have some restrictions depending on
Type class

O (+) :: Num a => a -> a -> a

O (") :: (Num a, Integral b) => a -> b -> a

J

Q,
& f /%
7 e -
o=c Yoz
";)uu\:"(\c{;
T, "NV P
P{AN-\E.‘&

Type classes

—-—- function that gives the bigger of two comparable elemenets
maks :: (Ord t) =>t -> t -> ¢
maks a b = if a > b then a else b
{_
maks "Ana" "Mika"
maks 12 34
maks 13.4 56
maks False True
maks 'a' 'b'

-}

-— function that adds 5 to the bigger of two comparable elemene
maksPlusd :: (Num t, Ord t) => t -> t -> ¢
maksPlusbS a b = (1f a > b then a else b) + 5
{_
maksPlusb 12 34
maksPlus5 13.4 56

-}

_

User defined type classes

class Negation a where
neg :: a —> a

instance Negation Integer where
neg k = k * (-1)

instance Negation Bool where
neg True = False
neg False = True

> neg (1 > 2)
True

> neg (21 + 45)
-66

3 £
P e S
2%, K F
(G0} "
1IN o
O"bi» \‘t'\'

