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ABSTRACT 
 
In the last years the advances in the receiver 
technology improved substantially the precision of the 
code pseudoranges. This is important not only for code 
DGPS but also for carrier phase DGPS, as the code 
double-difference (DD) solution is a crucial aspect by 
the most On-The-Fly algorithms. Good code DD 
coordinates allow a small search space for the 
ambiguity fixing, which results in fast and reliable 
ambiguity resolution. 
 
This paper describes a real-time algorithm, that 
improves the accuracy and precision of the code 
double-differences. The basic idea of the algorithm has 
also been applied to phase DGPS. Here, the advantage 
of the algorithm is not so much the accuracy 
enhancement, as the efficiency of the algorithm to 
detect signal distortions and to consider their 
magnitudes by the adjustment. This becomes particu-
larly important in the case of interferences. 
 
To demonstrate the efficiency of the algorithm, field 
measurements using geodetic receivers of the latest 
generation are here analyzed. This data analysis 
verifies the superiority of the new algorithm, especially 
in a noisy environment. 
 
1. INTRODUCTION 
 
The GPS market expands continuously and the 
requirements of the users are growing. The receiver 
manufacturers response to this request with improved 
equipment. The geodetic receivers of the latest 
generation have a significantly improved performance. 
Dual frequency code data and full wavelengths on L2, 
even under Anti-Spoofing (AS), are standard charac-
teristics of them. Besides these features, modern 
receivers supply measurements of better quality. Some 
years ago the noise level of the code pseudoranges was 
in the order of a few meters. Today, it is some decime-
ters. 
 
These improvements must be considered by the 
development of data processing algorithms. A good 
example to explain this are the code double-differences 
(DD). Improved acquisition of weak signals means 
primarily more precise measurements to low satellites. 
Should we still treat low satellites as we have done ten 
years ago using dramatically inferior receivers? What 
is actually the impact of these observations on the posi-

tioning precision? These questions will be discussed in 
this paper. 
 
Close related to this problem is the question of 
weighting the observations. As a rule, measurements 
(code or phase) below 15 or 20 degrees are not used 
and all others are uniformly weighted. This is a rule of 
thumb, but nowadays a rough one! The physical 
interpretation of it could be expressed as: "All observa-
tions to satellites above the limit are of exactly the 
same precision and all the rest are so bad that they 
should not be used at all". Obviously, this strategy is 
quite unrealistic and should be reconsidered. A method 
that overcomes this problem is proposed here and 
validation tests are described. 
 
2. THEORETICAL BACKGROUND 
 
In general, the precision of the GPS coordinates 
depends on two parameters: the geometry of the used 
satellites and the precision of the observations. The 
first is expressed by means of the Dilution Of Precision 
(DOP) and the second by the standard deviation of the 
observables. For DGPS these correspond to the 
Relative DOP (RDOP) (Goad, 1988) and to the 
standard deviation of the DDs.  
 
2.1 Impact of low satellites 
 
The DOP as well as the redundancy of the system 
become better when more satellites well distributed in 
the sky are used. Thus, low satellites near the horizon 
improve the DOP. But we do not use them, because 
their signals travel a long path through the atmosphere 
and are very noisy (big standard deviation). To achieve 
the optimal results, we make a compromise rejecting 
satellites below an elevation cut-off angle. We lose in 
geometry but we gain in observation quality. 
Obviously, the optimal limit depends strongly on the 
performance of the receiver when tracking satellites at 
low elevations. 
 
It is well known that the precision of the estimated 
parameters in a least squares adjustment can be 
determined without having the observations. All we 
need is the design matrix and the standard deviation of 
the measurements. Thus, having certain precision 
requirements for the coordinates we could theoretically 
compute the corresponding elevation limit. Unfortu-
nately, in practice this is not reliable. A first reason for 
that is the imperfect modelling of the observations. By 
building DDs the most undesired effects cancel out but 
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not completely. The analytical estimation of the 
remaining error is very difficult. A second reason is 
that the standard deviation of the observations depends 
on the elevation in a quite complicated way. So, the 
best way to find the impact of low satellites is to 
evaluate field data. 
 
Many data tests with geodetic receivers showed that 
low satellites improve the code DD solution. The 
situation for the phases is much more complicated and 
must be further investigated.  
 
2.2 Usual weighting 
 
As already mentioned, the DDs are usually uniformly 
weighted. Assuming � to be the standard deviation of 
the (undifferenced) pseudorange and considering 
uncorrelated observations the weight matrix of the DDs 
is (Hofmann-Wellenhof et. al., 1994): 
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where n is the number of DDs. 
 
In this consideration there are two questionable points:   
�� We apply the error propagation considering zero 

correlation between the undifferenced observations. 
But on the other hand we build double-differences 
to make the common effects (non-zero correlation) 
cancel out. 

�� We assume that all observations are of the  same 
quality (common standard deviation). 

 
2.3 Advanced weighting 
 
These two points are actually very close related. 
Although - strictly speaking - it is not correct to use 
equation (1) we do this because of the difficulty to 
compute the standard deviation of every observation 
and the covariance between them. We cannot start by 
estimating the noise of the undifferenced observation 
in the conventional way and the applying error 
propagation. For example, the precision of a code 
pseudorange is very poor, let us say 30 m one sigma. 
The main reason for that is Selective-Availability (SA). 
For simplicity let us also assume that this it is the only 
reason. Applying error propagation assuming stochas-
tic independence, the one sigma for the code-DD 
would be 60 m, which is a very bad estimation. For 
modern receivers the noise level of the code-DDs is 
about 0.2-1.5 m. Of course, the mistake was to ignore 
the correlation that originates from the SA. The 
computation of the covariances between the four 
pseudoranges that build a DD is an extremely difficult 
task. 

 
There are two good ways to overcome this difficulty: 
 
�� to estimate directly the noise of the DDs or  
�� to estimate the noise contribution of only that 

effects that do not vanish in the DDs. Then, error 
propagation for independent observations can be 
applied. 

 
The first way is easier but there is the problem of 
estimating the covariance, which is equal to the 
variance of the single-difference (SD) to the reference 
satellite. As many effects remain in the SDs, the non-
diagonal elements of the weight matrix might be 
greater than the diagonal, a fact that would lead to a 
negative definite matrix. The second way is more 
difficult but has the advantage that the error 
propagation can be applied. This guarantees a positive 
definite matrix. 
 
A technique for computing directly the noise of the 
DDs can be found in (Gianniou, 1995). When data 
sampled at a high rate are numerically differentiated in 
time, the noise level is recovered. This method can be 
applied to raw-pseudoranges (code or phase), SDs and 
DDs. Biases (ambiguities, clock offset etc.) vanish 
when differentiating in time. The high sampling rate 
ensures furthermore that long period effects cancel out. 
This technique works good but requires a pre-
processing and thus is not adequate for real-time 
applications. 
 
Here, the second way will be followed. For estimating 
the noise level of only that effects that remain in the 
DDs, the Signal-to-Noise Ratio (SNR) will be used. 
This quantity gives the strength of the desired signal 
relative to that of the noise. Generally, it is defined as 
(Horowitz and Hill, 1980): 
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where V is the RMS value of the voltage and the 
indices s and n stand for signal and noise, respectively. 
The bigger the SNR the more precise is the measure-
ment. The most undesired effects that cancel out in the 
DDs do practically not affect the SNR. 
 
Very close related to the SNR is the carrier to noise 
power c/no. The relation between this quantity and the 
variance for the code delay lock loop (DLL) is (Ward, 
1994): 
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where F is the DLL discriminator correlator factor, B 
the code loop noise bandwidth and T the predetection 
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integration interval. The standard deviation for the 
phase lock loop (PLL) is: 
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Obviously, the c/no describes the noise of both the code 
and the phase measurement. However, we do not use 
these formulas in our method. The first reason is that 
the involved parameters are usually not given by the 
manufacturers. The second reason is that the SNR units 
are not common for all receivers. For example, the 
TRIMBLE manufacturer gives for the SSE: „The SNR 
units are not easily specified“. In order to use the SNR 
for the variance computation, we evaluated a formula 
for the units of SSE. A double differentiation in time 
has been applied to code and phase DDs to estimate the 
standard deviations of the code and the phase raw-
measurements. Then, two exponential functions: 
 

� �� SNR a b c SNR� �  � e                (5) 
 
have been estimated. The evaluation of the parameters 
a, b, c has not been done in sense of a least squares 
fitting, because our method described below is not 
sensitive to small variations of these parameters. 
Figures 1 and 2 show the estimated standard deviations 
and the evaluated empirical functions for the code and 
the phase, respectively. The worth of these functions is 
that they express quite good the relative variance 
between observations with different SNR values. The 
absolute values seem also to be good estimations but 
this point must be further investigated. 
 
The SA is a good example to demonstrate why the 
computed variance does not concern effects that vanish 
in the DDs, because SA does not affect the SNR. In the 
contrary, interferences for instance, that do not cancel 
out in the DDs, reduce the SNR. Strictly speaking, 
there are some influences that affect the SNR and 
vanish in the DDs. For instance, the atmospheric 
refraction, which is mostly eliminated in differential 
mode, reduces the SNR due to signal attenuation. But 
this concerns both stations and so does not introduce a 
differential error. An effect that could have negative 
impact on the noise evaluation by means of SNR is 
multipath, which cause variations of the SNR. This 
case must be further investigated. 
 
On hand of the exponential functions (figures 1,2) for 
the code and phase pseudorange we build the 
covariance matrix for the DDs applying error 
propagation. The non-diagonal elements are equal but 
the diagonal are not. In the following the use of its 
inverse matrix as the weight matrix will be referred to 
as advanced weighting. 
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Figure 1: Estimated standard deviations and empirical 

function (solid line) for code. 
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Figure 2: Estimated standard deviations and empirical 

function (solid line) for phase. 
 
3. DATA ANALYSIS 
 
The impact of low satellites and the potential of the 
advanced weighting do not depend on the measurement 
mode: They concern both static and kinematic 
measurements. For the rapid-static applications they 
allow the reduction of the occupation time without loss 
of accuracy (Gianniou, 1995). Here, kinematic data 
will be analyzed. 
 
3.1 Impact of low satellites 
 
In order to estimate the quality of the code DD 
coordinates, we use as reference the solution of our 
OTF algorithm. The difference between the OTF and 
the code DD coordinates - in the following referred to 
as error in X, Y or Z - describes both the accuracy and 
the precision of the code solution. 
 
Analysis of many data sets has shown that satellites 
below 20° or 15° improve the code DD solution. Here, 
two examples will be given. 
 
The first data set is from a test with a van in February 
1994. Two TRIMBLE 4000SSE receivers have been 
used together with geodetic antennas with ground-
planes. Figure 3 shows the error in Z-coordinate when 
using all available satellites and only that above 20°. It 
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is interesting that there were many satellites (seven) 
above 20°. The difference between the two cases are 
two satellites with elevations between 15° and 20°. The 
use of all satellites improves all three coordinates as 
can be seen in figure 5. 
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Figure 3: Error in Z-coordinate using all satellites and 

that above 20° (curve shifted by 2 m). 
 
The maximum distance between reference and rover 
receiver was 1.5 km. To investigate the influence of 
this distance, we processed the data using also a far 
(7.5 km) reference station. Of course, the near one 
yielded better results, but the improvement when using 
all satellites was clear in both cases. 
 
The second example is from a flight test with a Dornier 
DO 228 aircraft in May 1994. Again TRIMBLE SSE 
receivers and geodetic antennas with groundplanes 
have been used. Thanks to a special construction, the 
antenna was mounted in a way that the groundplane lay 
on the level of the aircraft body. The distance between 
reference and airborne receiver was up to 1.5 km. 
Figure 4 shows the error in X-coordinate when using 
all satellites and when leaving out four satellites below 
20°. Their elevations lay between 10° and 17°. The 
shown data correspond to engine warming up, rolling 
and taking-off. The improvement of all three 
coordinates can be seen in figure 5, which gives the 
standard deviation of the coordinate errors. 
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Figure 4: Error in X-coordinate using all satellites and 

that above 20° (curve shifted by 6 m). 
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Figure 5: Standard deviation of coordinate errors using 

all satellites (light bars) and that above 20° 
(dark bars). 

 
3.2 Advanced versus usual code weighting 
 
In order to demonstrate the efficiency of the advanced 
code weighting, two examples of kinematic measure-
ments will be given here. 
 
The first is from the flight test described in section 3.1. 
The elevation cut-off angle for the observations was 
10°. As we showed in figure 4 the best results are 
obtained when all satellites are used in the code DD 
adjustment. In order to demonstrate the full potential of 
the proposed method, we will compare the usual and 
advanced solution when using all satellites. Six to eight 
satellites were observed, four of them having eleva-
tions between 10° and 17°. The error in Z (OTF - code 
DD coordinate) for the two cases is shown in figure 6. 
 
The second example is from a test measurement with a 
van on October 25, 1995. On this day AS was disabled 
and the two TRIMBLE SSi receivers measured P-code 
pseudoranges. A third SSi, located 7 km away, has 
been used as an alternative reference station. This 
receiver has been forced to observe in E-mode, 
ignoring the P-code. (The E-mode is used by the SSi 
when AS is enabled, in order to get code and full 
wavelength phase data on L2). The reason for that was 
to test our weighting method when the SNR values of 
one receiver originate from P-code and that of the other 
from E-mode. Based on our experience we believe that 
if the relation between noise and SNR is different in 
the two cases, this difference should be small. This is 
also verified from the processing of the kinematic data 
using both the near reference station (P-code) and the 
far one (E-mode). 
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Figure 6: Error in Z-coordinate for advanced and usual 

code weighting (curve shifted by 5 m). 
 
The error in X for the usual and advanced adjustment 
using the near reference station (0.2 - 1.4 km) is shown 
in figure 7. Clearly, the proposed weighting yields 
much smoother results. Furthermore, the coordinates 
are closer to the true (OTF) values. Subtracting the 
minimum from the maximum error, we obtain the 
width of the interval around the true value in which the 
coordinates of all epochs lay. These intervals for the 
tests with the van (using both reference stations) and 
the aircraft are shown in figure 8. 
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Figure 7: Error in X-coordinate for advanced and usual 

code weighting (curve shifted by 2 m). 
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Figure 8: Maximum - minimum error for usual (dark 

bars) and advanced (light bars) weighting. 
 

3.3 Advanced versus usual phase weighting 
 
The motivation for the development of our method was 
the big difference in the noise level of the code 
pseudoranges. In some cases a noisy code DD have a 
variance about 10 times bigger than a good DD. 
Outstanding examples can be found in (Gianniou, 
1995). For the phases this difference is smaller and 
does not affect so seriously the coordinates. However, 
if subcentimeter accuracy is desired then the advanced 
weighting should be applied. 
 
In general, the epoch by epoch phase solution is very 
precise. Thus, the advanced phase DD adjustment 
yields only a small improvement of about 10%-20%. 
But in extreme cases the improvement can be bigger. 
We can see such a case if we look at the middle 
interval in figure 9. The usual solution lies in a 24 mm 
wide zone around the correct value. The zone for the  
advanced solution is only 15 mm wide. This cor-
responds to an improvement of 37%. The data in the 
figure are collected in static mode at a known baseline. 
Seven satellites have been used, all above 15°. The 
signal reception was good and no cycle-slips occurred. 
 
 

141400 141500 141600 141700 141800 141900
time [GPS seconds]

-0.01

0.00

0.01

0.02

0.03
er

ro
r i

n 
X

 [m
]

usual

advanced

 
 
Figure 9: Error in X-coordinate for advanced and usual 

phase weighting (curve shifted by 0.02 m). 
For static measurements, the improvement of the 
advanced solution is usually as large as in the first and 
in the last third of the data in figure 7, namely a few 
millimeters. For kinematic mode we can not make a 
statement because it is very difficult to have a reference 
solution with accuracy higher than that of phase DGPS. 
 
4. DISCUSSION 
 
4.1 Impact of low satellites 
 
The impact of low satellites has been investigated by 
numerous static measurements. It has been found that 
even very low satellites, e.g. 5°, improve the code DD 
coordinates. The data were collected with TRIMBLE 
SSE, SSi and NovAtel L1 cards but we believe that this 
must be the case by any good geodetic receiver. In 
addition, there is no reason to believe that the impact of 
low satellites would be different in kinematic mode. 
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To verify this, we have analyzed some kinematic 
measurements. From the data analysis in the previous 
chapter we can see that the low satellites make the 
solution more stable. The standard deviations of the 
coordinate errors are reduced as well as their minimum 
and maximum values. This can be explained by the 
increased redundancy of the system in connection with 
the low noise of the observations near the horizon. 
 
Besides the enhanced precision, there is sometimes a 
big improvement in the accuracy (absolute value) of 
the coordinates, as for example in the last 100 seconds 
in figure 3. In general, this can be explained by the 
better geometry when using more satellites. 
 
The improvement of the code solution is important not 
only for code DGPS but also for carrier phase DGPS, 
especially in real-time. The reason for that is that good 
code coordinates allow for a smaller searching space 
when fixing the float ambiguities. An extensive 
discussion of this point can be found in (Gianniou and 
Groten, 1996). 
 
4.2 Advanced versus usual code weighting 
 
Besides the positive impact of low satellites, the code 
solution can be improved using the proposed advanced 
weighting.  
 
First of all, the advanced adjustment leads to smoother 
coordinates and consequently to smoother trajectory. In 
addition, the estimated position is closer to the correct 
one as can be seen in figures 6 - 8. In the last figure we 
can see that the biggest improvement is obtained for 
the most noisy coordinates and amounts up to 48%. 
Another interesting point concerns the negative peak in 
the usually weighted data of figure 7. Such peaks 
appear often when the receiver begins to track a new 
satellite. At the very first epochs this one measurement 
can be so bad to cause a considerable error even in 
overdetermined systems. Such measurements have - at 
least by TRIMBLE - a very low SNR indicator. Our 
method gives to such observations very small weight 
preserving the precision of the solution. 
 
A last aspect to be discussed is the different level of 
improvement of the three coordinates. As already 
mentioned, at most are improved the coordinates that 
are worst estimated. This is also the case when using 
low satellites (see figure 8). This fact can be explained 
by the geometry of the DDs. In the same way we can 
explain why sometimes one coordinate becomes 
slightly worse. But this is not a problem because this 
coordinate is always the best one. For example, for the 
geographical position of Germany this is the Y 
coordinate. Furthermore, the degradation is negligible 
compared to the improvement of the other two 
coordinates. 

 
4.3 Advanced versus usual phase weighting 
 
The advanced weighting of the phases is needed 
mainly for highest precision applications. However, for 
ordinary applications it has two advantages. First, it 
permits the control of the measurements by means of 
the SNR and so prevents from using quite bad 
observations that can distort considerably the results. 
Second, at some certain epochs the improvement can 
amount more than 1 cm, as for example about the 
epoch 141660 in figure 9. So, the proposed method 
becomes effective when a position is determined from 
few observations. This is always the case in kinematic 
DGPS. 
 
5. CONCLUSIONS 
 
In this paper the role of low satellites in DGPS has 
been investigated. The test measurements with the 
geodetic receivers showed that satellites between 5° 
and 20° above the horizon improve the code DD 
coordinates. This is important not only for code DGPS 
but also for phase DGPS because a good code solution 
accelerates the OTF algorithm. This reduction of the 
computation time is particularly important for real-time 
implementations. 
 
It would be interesting to find out the impact of low 
satellites on the code DDs for receivers without phase 
measurement capability and if a lower elevation cut-off 
angle must be adopted or no limit at all. In addition, the 
situation for the phase DDs must be further investi-
gated. 
 
A new method for weighting the code and phase DDs 
has been described and its efficiency has been 
demonstrated by analysis of field data. The method 
takes into account the different noise level of the 
observations used in an epochwise adjustment. The 
noise level depends primarily on the receiver 
performance, the elevation of the satellites and 
environmental effects such as interferences. 
 
The effect of the advanced weighting is similar to that 
of a filter, i.e. the noise of the estimated parameters is 
reduced. In comparison with existing filtering 
algorithms our method has the following advantages. It 
does not need time to become effective, as for example 
the phase-smoothing of codes. It is not as time-
consuming as the implementation of sophisticated 
filters. All what  is needed is a slight modification of 
the routine for the computation of the weight matrix. 
These two aspects make our method particularly 
adequate for real-time applications. Furthermore, for 
the advanced adjustment of code DDs there is no need 
to have expensive equipment with phase measurement 
capability. 
 
The main reason for increased noise in the observations 
is the low elevation of the satellite. Some researchers 
have determined formulas describing the relationship 
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between noise and elevation. The disadvantage of these 
functions is that they are common for every data set 
and do not consider occasional parameters. Interfe-
rences for instance increase the observation noise and 
decrease the SNR. The proposed method considers this 
fact and overcomes the problem to a large extend. An 
aspect to be further investigated is the behaviour of our 
method in the case of fluctuating SNR due to e.g. 
strong multipath. 
 
But in any case the dependence of noise on either 
elevation or SNR is different for every receiver type. In 
other words the empirical functions (5) for the code 
and the phase must be estimated for the available 
receiver type. The functions shown in figures 1 and 2 
are good estimations for the SSE and SSi models. 
 
Our approach of individually weighting every 
observation will lead to a dramatic improvement in the 
precision of the single-point positioning in case that SA 
will be turned off. This case is seriously being 
discussed in the last years. 
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