
Numerical environmental modeling is keeping the last decades a primary role in research and technological advances. The application of atmospheric and wave model 

outputs for renewable energy estimation and monitoring is particularly highlighted under the concerns posed by the recent economic crisis and the questions for global 

warming and climate change. Within this framework the utilization of optimization techniques which, in conjunction with mesoscale and regional wind/wave 

modeling systems, provide accurate environmental predictions in long and short term horizons is receiving increased attention.  

In the present work, novel techniques for the estimation of the biases and uncertainty of numerical weather prediction systems are proposed based on the combination 

of dynamical statistical tools (Kalman filters) and recent advances in a relatively new branch of mathematics the Information Geometry. The latter implements 

techniques from the non-Euclidean geometry in statistics, targeting to the optimization of the solution of nonlinear problems. More precisely, the probability 

distributions obtained by simulated wind/wave data and the corresponding observations are categorized as elements of statistical manifolds, the appropriate geometric 

framework is clarified – avoiding classical simplifications associated with least square methods, and the discrepancies between the modeled and recorded datasets are 

measured by means of corresponding minimum length curves (geodesics). The latter are reached as solutions of second order differential equations for the study of 

which numerical techniques are employed. The proposed methodology is applied to selected areas of Greece targeting to the optimal estimation and monitoring of 

renewable energy sources. 
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Introduction 

Numerical Modeling for Wind/Wave Parameters  
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Atmospheric Model SKIRON 

SKIRON has been developed at the University of Athens by the Atmospheric 

Modeling and Weather Forecasting Group based on the Eta/NCEP model 

• It consists of various modules for pre- and post- processing together with a 

version of the Eta model appropriately coded in order to run on any parallel 

computer platform 

• Is a full physics non-hydrostatic model with sophisticated convective, 

turbulence and surface energy budget scheme 

Atmospheric Model RAMS 

RAMS is a highly versatile numerical code, developed at Colorado State 

University and Mission Research Inc/ASTeR Division. It is considered as one of 

the most advanced modeling systems available today.  

It is a merger of a non-hydrostatic cloud model and a hydrostatic mesoscale 

model. It is able to simulate atmospheric phenomena with resolution ranging 

from tens of kilometers to a few meters. 

Wave Model WAM 

WAM - ECMWF parallel version (Komen et al., 1994; WAMDI group, 1988; 

Bidlot J. and Janssen P. 2003)  is a third generation wave model, which computes 

spectra of random short-crested wind-generated waves.  

• The model describes the evolution of a two-dimensional ocean wave 

spectrum.  

• In contrast to first and second generation models, WAM introduces no ad hoc 

assumptions on the spectral shape. 

• It computes the 2-d wave variance spectrum through integration of the 

transport equation 

  

F represents the spectral density with respect to (f,θ,φ,λ), f denotes 

frequencies, θ directions, φ latitudes, λ longitudes 

• The source function S is represented as a superposition of the wind input Sin, 

white capping dissipation Sdis, and nonlinear transfer Snl 

Numerical wave (and atmospheric) models have been proved successful for the simulation of the general sea state conditions on 

global or intermediate scale.  

However, when focusing on local characteristics systematic errors may appear due to:  

 the strong dependence on the initial/boundary conditions, 

 the inability to capture sub-scale phenomena  

 the parameterization of certain atmospheric/wave procedures 

 the lack of a dense observation network which could help on the systematic correction of initial conditions.   

The validity for high quality wind/wave simulations is of critical importance today for a number of important applications:  

 

 

 

The use of numerical prediction models, in combination with available observations, has been recognized by the research and technical community as the main tool 

towards accurate environmental simulations/forecasts. Such models solve the main equations governing the atmosphere and wave evolution based on arithmetic 

schemes (finite differences on grid points or others).  

The following models are utilized by our group for atmospheric and wave simulations:  

 Global Warming      

 Renewable energy estimation, monitoring and forecasting  

 Transportation 

 Marine pollution 

 Ship safety 

 Agricultural activities       

Increase the model resolution: It remains an open question if this leads to a considerable improvement of the forecast skill. Even 

if this is true, it also results to increased computational cost. 

Assimilation systems.  

 Used for correcting the initial conditions based on available observations 

 Problems: Limited available/quality controlled observations over oceans, Limited spatial and temporal impact 

Statistical post-processing methods for local adaptation  

MOS methods, Neural networks:, Kalman filters   

In all the above cases a cost function should be minimized  

For example, in the case of Kalman filters :  

The evolution in time of an unknown process xt is described by the system equation:   xt = Ft∙xt-1 + wt  

A known process yt is used in connection with xt by the observation equation     yt = Ht∙xt + vt 

The filter is based on the minimization of the covariance matrix  E(xtxt
T) of xt 

Is this distance adequately measured ?   

A serious simplification is made here: The distance/cost-function is measured by means of classical Euclidean Geometry tools.   

Information Geometry  

• A main subject: Given two probability distributions or two data 

sets, is it possible to define a notion of distance between them? 

• Families of probability distributions are recognized as 

(statistical) manifolds on which geometrical entities such as 

Riemannian metrics, can be naturally introduced.  

• The geometrical framework in such a manifold is given by the 

Fisher information matrix with elements 

 𝑔𝑖𝑗
 
𝜉 =  𝜕𝑖𝓁 𝑥; 𝜉 𝜕𝑗𝓁 𝑥; 𝜉 𝑝 𝑥; 𝜉 𝑑𝑥     

    where 𝓁 𝑥; 𝜉 = 𝑙𝑜𝑔 𝑝(𝑥; 𝜉) and 𝑝 the distributions 

• The minimum distance between two elements 𝑓1  𝑎𝑛𝑑  𝑓2 of a 

statistical manifold  is defined by the corresponding geodesic - 

the minimum length curve ω that connects them. Such a curve 

𝜔 = 𝜔𝑖 ∶   ℝ → 𝑆 is the solution of a system of 2nd order 

differential equations:   

𝜔𝑖
′′ 𝑡 +  𝛤𝑗𝑘

𝑖 𝑡

𝑛

𝑗,𝑘=1

𝜔′𝑗 𝑡 𝜔
′
𝑘 𝑡 = 0,   𝑖 = 1, 2, … , 𝑛.  

under the conditions 𝜔 0 = 𝑓1, 𝜔 1 = 𝑓2 , where  𝛤𝑗𝑘
𝑖   

are the  Christoffel symbols  of the Levi-Civita connection with 

respect to the Fisher metric 

Information geometry is a relatively new branch of Mathematics applying methods and techniques of non-Euclidean geometry to 

stochastic processes.  

Information Geometric techniques can significantly support the optimization of the environmental predictions either via 

assimilation or post process systems.  

The main steps that should be taken are:  

•  Estimate the statistical distributions followed by the data in study. 

•  Establish the corresponding geometric environment, i.e. the appropriate statistical manifold.  

•  Use this framework in order to accurately estimate the distance between data sets and, therefore, adequately define the 

cost-functions used.  

Applications of Information Geometry to Wind/Wave Modeling  

A test case for area of Greece 

• The numerical models SKIRON and WAM were used to numerically wind speed and significant wave height values for a 

10-year period (2001 – 2012) at a high spatial (5Km) and temporal resolution mode over different areas of Greece.  

• The results were compared with corresponding records from satellites.  

 

 

 

 

         The testing area                                            The modeled data                The corresponding observations   

• Based on different statistical tests (Kolmogorov-Smirnov, Anderson-Darling) it was proved that the 2-parameter 

Weibull distribution fits well to the data in study, both modeled and observed data, but with different shape and scale 

parameters (a, β) . 

• The obtained pdfs could be recognized as elements of the Weibull statistical manifold: 

  𝑆 =  𝑓 𝑥 =
𝛼
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,  𝛼, 𝛽 > 0  

• The Fisher information matrix takes the form   𝐺 𝛼, 𝛽 =
𝛼2𝛽2 𝛽(1 − 𝛾)

𝛽(1 − 𝛾)
6(𝛾−1)2+𝜋2

6𝛼2

 =
5.76 0.63
0.63 0.71

,  where γ is the 

Euler Gamma. 

• The corresponding geodesics, necessary to estimate distances between different data sets  are solutions of the second 

order system:  

 ω1΄΄- 0.94(ω1΄)
2 + 1.39ω1΄ω2΄- 0.17(ω2΄)

2
     =  0  

 ω2΄΄– 0.18 (ω1΄)
2 + 0.55ω1΄ω2΄ – 0.69(ω2΄)

2
  = 0  

• Numerical techniques should be utilized for solving such type of equations 

Ways out – Optimizing the Numerical Models Outputs  

Models Limitations  
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