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Quadratic RK Shooting solution

for a Environmental Parameter Prediction

Boundary Value Problem.

This work is co-funded by the European Union (European Social Fund)
and Greek national resources under the framework

of the ”Archimedes III: Funding of Research Groups in TEI of Athens”
project of the ”Education & Lifelong Learning” Operational Programme.
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Framework of the talk:
1. The Physical Problem and Information Geometry

2. The Mathematical Problem and its Numerical Solution

3. Numerical solution using Shooting method

4. Numerical Tests and Observations
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Environmental Parameter Forecasting and Information
Geometry

The need for high quality environmental predictions-simulations is
very important due to important applications

( Climate change, Renewable energy
production,Transportation,Marine pollution,Ship safety )

Weather and wave forecasting models, usually successful in
simulating global or intermediate scale environmental conditions,

are considered. On local conditions such models may not be
successful for various reasons.
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In order to study the suitability of the models a ”cost function”
measuring the bias (”the distance”) of the environmental data and

the output of the models should be engaged.

The distance/cost-function should be better measured by means of
Information Geometry tools instead of of classical Euclidean

Geometry tools.
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The minimum distance between two elements f1 and f2 of a
statistical manifold S is defined by the corresponding geodesic ω

which is the minimum length curve that connects them. Such a
curve

ω = (ωi) : IR→ S (1)

satisfies the following system of 2nd order differential
equations:

ω
′′

i (t) +
n∑

j,k=1

Γijk (t)ω
′

j (t)ω
′

k (t) = 0, i = 1, 2, . . . , n. (2)

under the conditions ω (0) = f1, ω (1) = f2 .
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The two parameter Weibull distributions have been proved a good
choice for fitting wind and wave data.

These distributions form a 2-dimensional statistical manifold with
ξ=[α,β], Ξ = {[α,β]; α and β>0} (where α is the shape and β the

scale parameter) and

p (x) =
α

β

(
x

β

)α−1
e−(xβ)

α

, α, β > 0. (3)
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Let us have ξ0=[α0,β0], ξ1=[α1,β1] two members of the Weibull
statistical manifold, then the previous system becomes:

ω
′′

1 (t) +
6
(
γα0 − α0 − π2

6

)
π2β0

(
ω

′

1 (t)
)2

+
12
(
γ2 − 2γ + π2

6 + 1
)

π2α0
ω

′

1 (t)ω
′

2 (t) −

6 (1− γ) β0
(
γ2 − 2γ + π2

6 + 1
)

π2a3

(
ω

′

2 (t)
)2

= 0

ω
′′

2 (t)−
α3
0

π2β20

(
ω

′

1 (t)
)2

+
12α0 (1− γ)

π2β0
ω

′

1 (t)ω
′

2 (t) −

6
(
γ2 − 2γ + π2

6 + 1
)

π2α0

(
ω

′

2 (t)
)2

= 0

under the conditions ω (0) =

[
α0

β0

]
, ω (1) =

[
α1

β1

]
where ω (t) =

[
ω1(t)
ω2(t)

]
and is γ = the Euler gamma.
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So, we need to study the numerical solution of the
following system of differential equations

ω
′′

1 + a11(ω
′

1)
2 + a12ω

′

1ω
′

2 + a22(ω
′

2)
2 = 0

ω
′′

2 + b11(ω
′

1)
2 + b12ω

′

1ω
′

2 + b22(ω
′

2)
2 = 0

under the conditions

ω1 (0) = ω0
1, ω2 (0) = ω0

2, ω1 (1) = ωN+1
1 , ω2 (1) = ωN+1

2 .

This is a second order Boundary Value Problem of a form

ω̃
′′

= F (ω̃, ω̃
′
) where ω̃ =

[
ω1

ω2

]
defined on the interval [0, 1].
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It is common to transform this second order system in the form of a
first order system of the form:

y
′

1 = y3
y

′

2 = y4
y

′

3 = a11y
2
3 − a12y3y4 − a22y24

y
′

4 = b11y
2
3 − b12y3y4 − b22y24

under the conditions

y1 (0) = ω0
1, y2 (0) = ω0

2, y1 (1) = ωN+1
1 , y2 (1) = ωN+1

2 .

where y1 = ω1, y2 = ω2, y3 = ω
′

1 and y4 = ω
′

2.
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So, this problem can be considered as a problem of the more general
class

y′(t) = f (t, y(t)), g(y(a), y(b)) = 0 (4)

where t ∈ [a, b], y : IR→ IRn, f : IR× IRn → IRn and
f : IRn × IRn → IRn.

In our case [a, b] = [0, 1], n = 4 and f is a quadratic function.

Our problem has separable boundary conditions
e.g.

g(y(a), y(b)) = (g0(y(a)), g1(y(b)))T = (0, 0)T

where g0(y(a)) = y(a)− ya and g1(y(b)) = y(b)− yb.
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Numerical Solution of BVPs can be divided into two classes:

• initial value methods e.g. shooting methods.

• global methods e.g. finite difference, collocation and
Runge-Kutta schemes.

In our project we have studied finite difference and collocation
methods.

For our problem collocation methods can be included in the class of
Runge-Kutta schemes.
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Shooting Method

We want to solve the BVP

y′(t) = f (t, y(t)), g(y(a), y(b)) = 0, t ∈ [a, b]

We denote ys(t) the solution of the IVP problem

y
′
(t) = f (t, y(t)), y(a) = s, t ∈ [a, b]

and we look for initial condition s = ys(a) so that
g(ys(a), ys(b)) = 0

So, the problem is transformed to system of nonlinear algebraic
equations

g(s, ys(b)) = 0

in each function evaluation of which we have to use the above IVP.



Home Page

Title Page

JJ II

J I

Page 13 of 29

Go Back

Full Screen

Close

Quit

Issues on Shooting Method

• For linear BVPs the shooting method is easier applied. Non-linear
BVP case is more complicated.

• Newton’s method for the solution of the nonlinear problem needs
involves the computation of the Jacobian.

• Jacobian is usually computed using finite differences or as a solu-
tion to ODEs.

• The IVP integration can be unstable (to the choice of the initial
condition s) even when the BVP is well conditioned.

• The sensitivity of solutions of an initial value problem (IVP) to
its initial conditions may influence the accuracy of the derivative
values and the (exact) solution ys(t) of the IVP might exist on
an interval shorter than [a, b].

• In our case we have a nonlinear problem where the initial values
of y3(a) = ω

′

1(0) and y4(0) = ω
′

2(0) are uknown.
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Runge Kutta as IVP integrators
The general s−stage embedded Runge-Kutta pair of orders

p(p− 1), advance the problem solution to tn+1 = tn + hn using two
methods which share the same function evaluations :

ŷn+1 = yn + hn

s∑
j=1

b̂jfj and yn+1 = yn + hn

s∑
j=1

bjfj,

where

fi = f (tn + cihn, yn + hn

s∑
j=1

aijfj), i = 1, 2, · · · , s.

and a stepsize control mechanism.
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At each step the local error estimate En = ‖yn − ŷn‖ of the
(p− 1)−th order Runge-Kutta pair is used for the automatic

selection of the step size.

Given a tolerance parameter TOL, if TOL > En the algorithm:

hn+1 = 0.9 · hn · (
TOL

En

)
1
p ,

provides the next step length.

In the case TOL ≤ En we reject the current step and retry by
estimating a new stepsize using the same formula replacing in the

left side hn+1 by hn.

Usually local extrapolation is applied, hence the integration is
advanced using the p−th order approximation.
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The Butcher tableau

c A
b

b̂

where A ∈ IRs×s , bT , b̂T , c ∈ IRs with c = A · e and
e = [1, 1, · · · , 1]T ∈ IRs. The vectors b̂, b define the coefficients of

the (p− 1)−th and p−th order approximations respectively.
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Implicit Runge Kutta Mehods

If A is not a lower triangular matrix the methods is implicit as fi is
involved in both the right and left part of a nonlinear (generally)

equation.

Thus fi’s can not be evaluated explicitly and nonlinear systems of
equations have to be solved.

This system shares (m× s) equations with (m× s) unknowns. In
each step we have to apply a modified Newton’s iteration scheme

inverting the matrix Im×s − hA⊗ ϑf
ϑy

.

Implicit RK methods can be A-stable and so can be ideal to
integrate stiff problems.
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Singly Diagonally Implicit Methods

For a method to be called Singly Diagonal Implicit has to satisfy

aii = d, i = 1, 2, · · · , s and aij = 0, for j > i.

So now, we have to deal with s systems with m unknowns.

Thus Newton’s method involves the inversion of the much easier
Im − h dϑfϑy .

So, we treat the stages one after the other and the specific matrix is
common for all stages when implementing the Newton’s method.
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Quadratic Runge Kutta Mehods

The coefficients A, b and c of a conventional Runge–Kutta method
have to satisfy certain conditions in order to attain an prescribed

order of accuracy.

When dealing with quadratic problems there is no need to satisfy all
the equations o attain a specific order. So, we can use the extra

parameters to produce methods special constructed for such
problems which have the same number of stages (e.g. computational

cost) but attain greater order and other characteristics such as
stability properties.
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24 Test Problems

We choose data from Levantive are (eastern Mediterranean Sea).

For every month of a year we have modeled wind speed and
wave height data either includes in the simulation the impact of

sea currents either not.

Second source of data is the available corresponding satellite
data.

The data are fitted by a 2-parameter Weibull
distribution to get their Weibull parameters.
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Data for the 24 Test Problems based on Weibull
distribution

model data model data satelite
no current with current data

Weibull Parameters shape α0 scale β0 shape α0 scale β0 shape α1 scale β1
Jan 1.600 1.010 1.726 1.095 2.523 1.441
Feb 1.500 1.400 1.571 1.464 2.450 1.762
Mar 1.462 1.132 1.578 1.225 2.560 1.509
Apr 1.564 0.695 1.719 0.754 2.140 1.012
May 1.533 0.608 1.608 0.661 1.576 0.780
Jun 2.333 0.633 2.542 0.680 3.759 0.759
Jul 2.557 0.837 2.688 0.876 3.515 0.960
Aug 3.099 0.716 3.341 0.759 4.938 0.889
Sep 2.418 0.754 2.580 0.800 3.491 0.968
Oct 1.629 0.551 1.850 0.609 2.204 0.665
Nov 1.446 0.892 1.499 0.919 1.911 1.224
Dec 1.435 1.216 1.512 1.283 2.208 1.442

When we consider theminimum length curve which connects
the each modeled and its corresponding satellite data we conclude

in 24 BVP problems.
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A simple case
The solution of problem Jan with current

ω1(t)

0.2 0.4 0.6 0.8 1.0

2.0

2.2

2.4

ω2(t)

0.2 0.4 0.6 0.8 1.0

1.15

1.20

1.25

1.30

1.35

1.40
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A harder case (stiffness)
The solution of Aug with current

ω1(t)

0.2 0.4 0.6 0.8 1.0

3.5

4.0

4.5

ω2(t)

0.2 0.4 0.6 0.8 1.0

-0.5

0.5
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The two competitors

• As RK integrators we choose pairs of methods.

• SDIRK4(3) is a general purpose classical pair of Hairer of orders
four and three with five stages.

• SDIRK5(3) is a quadratic L-stable pair of Singly Diagonally
Implicit methods of Tsitouras and Famelis with orders five and
three and the same number of stages.
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Numerical tests

• We use the Mathematica and NDSolve with shooting and
variable stepsize providing the one step RK integrator.

• Under the ”NDSolve Method Plug-in Framework” we
provide the NDSolve with ”Step function” which implements
a single step of the diagonally implicit RK pair integrators and
returns either the stepsize and the solution in the next timestep
or the rejected stepsize in the variable stepsize mode.

• Tolerance parameter os chosen to be TOL = 1E − 05.

• NDSolve provides the solution in an continuous interpolat-
ing form of desired order. So, we can differentiate it and attain
approximations of the derivative of the unknown functions too.

• As a measure of the attained accuracy we record the maximum
absolute value that the numerical solution fails to satisfy the dif-
ferential equation e.g. the defect.
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The defect of a differential equation y′(t) = f (t, y(t)),

δ(t) = y(t)− f (t, y(t))

can be used as an estimation of the global error since it arises
in the analysis of the mathematical conditioning of the underlying
problem where appropriate condition numbers are introduced to
quantify the sensitivity of the global error to perturbations of the

ODEs.
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Three Initial condition choices

• O(1) approximation of the unknown initial values

ω′1(0) ≈ ω1(1)− ω1(0)

1
, ω′2(0) ≈ ω2(1)− ω2(0)

1

• O(0.1) approximation of the unknown initial values

ω′1(0) ≈ ω̃1(0.1)− ω1(0)

0.1
, ω′2(0) ≈ ω̃2(0.1)− ω2(0)

0.1

where ω̃1(0.1) ≈ ω1(0.1) and ω̃2(0.1) ≈ ω2(0.1)

• O(0.01) approximation of the unknown initial values

ω′
1(0) ≈

−ω̃1(0.2) + 4ω̃1(0.1)− 3ω̃1(0)

2 · 0.1
, ω′

2(0) ≈
−ω̃2(0.2) + 4ω̃2(0.1)− 3ω̃2(0)

2 · 0.1

where ω̃1(0.1) ≈ ω1(0.1), ω̃2(0.1) ≈ ω2(0.1) and ω̃2(0.2) ≈
ω̃2(0.2)
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Defect for the 24 problems (* means not succeeded)
DIRK43 DIRK53

initial conditions estimation initial conditions estimation
O(1) O(0.1) O(0.01) O(1) O(0.1) O(0.01)

Jan no c. 2.27773E-07 2.27773E-07 2.27773E-07 4.06234E-09 4.06470E-09 4.06232E-09
Jan wi c. 6.08631E-08 6.08628E-08 6.08628E-08 8.20685E-10 8.20686E-10 8.20712E-10
Feb no c. 2.33444E-08 2.33444E-08 2.33440E-08 2.40410E-10 2.41323E-10 2.40410E-10
Feb wi c. 1.54921E-08 1.55180E-08 1.54923E-08 1.47390E-10 1.49771E-10 1.47440E-10
Mar no c. 1.74658E-07 4.50210E-07 4.50210E-07 9.03559E-09 9.03552E-09 9.03619E-09
Mar wi c. 1.74684E-07 4.50210E-07 1.74658E-07 1.47390E-10 2.86132E-09 2.86124E-09
Apr no c. 1.06854E-07 1.06855E-07 1.06854E-07 2.85923E-09 1.77438E-09 1.77447E-09
Apr wi c. 7.27396E-09 7.27390E-09 7.27394E-09 7.32224E-11 7.27160E-11 7.01154E-11
May no c. 1.15521E-11 1.24961E-11 1.20954E-11 1.25582E-11 1.11290E-11 1.11668E-11
May wi c. 1.28693E-11 1.18670E-11 1.18482E-11 1.22677E-11 1.21850E-11 1.20289E-11
Jun no c. * * * * 2.51851E-03 6.37770E-03
Jun wi c. * * * * 9.33820E-05 9.33820E-05
Jul no c. * 9.02619E-06 9.02619E-06 * 3.45436E-07 3.45436E-07
Jul wi c. * 1.86711E-06 1.86708E-06 * 5.10881E-08 5.10882E-08
Aug no c. * * * * * 9.46509E-02
Aug wi c. * * * * 2.11818E-03 2.11818E-03
Sep no c. * 7.19628E-05 7.19514E-06 * 3.31465E-06 3.31465E-06
Sep wi c. * 7.54889E-06 7.54889E-06 * 2.81104E-07 2.81104E-07
Oct no c. * 7.54889E-06 1.81217E-06 * 5.57580E-08 5.57580E-08
Oct wi c. 2.73956E-08 2.73962E-08 2.73962E-08 3.52567E-10 3.52567E-10 3.55544E-10
Nov no c. 5.08204E-10 5.09301E-10 5.09429E-10 1.29120E-11 1.28251E-11 1.27783E-11
Nov wi c. 3.09348E-10 3.09794E-10 3.09922E-10 1.15062E-11 1.23028E-11 1.15062E-11
Dec no c. 2.66150E-08 2.66403E-08 2.66150E-08 2.97735E-10 2.97613E-10 2.97640E-10
Dec wi c. 1.45463E-08 1.45463E-08 1.45463E-08 1.42820E-10 1.42872E-10 1.52062E-10
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Remarks

• Both DIRK pairs have similar computational cost.

• DIRK 5(3) attains in (almost) all problems better approximations
(up to two digits).

• The sensitivity of shooting method in the accuracy of the initial
choices of ω′1(0), ω′2(0) is very high.

• DIRK 5(3) proves to be less sensitive as it succeeds in cases where
DIRK 4(3) fails.


