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Classical and Quasi-Newton methods

on the numerical solution

of a Boundary Value Problem

which rises in the prediction

of meteorological parameters

using finite differences

This work is co-funded by the European Union (European Social Fund)
and Greek national resources under the framework

of the ”Archimedes III: Funding of Research Groups in TEI of Athens”
project of the ”Education & Lifelong Learning” Operational Programme.
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Framework of the talk:
1. The Physical Problem and Information Geometry

2. The Numerical Solution using Finite Differences

3. Using Newton’s method with a LU modification.

4. Quasi Newton’s Methods

5. Numerical Tests and Observations
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Environmental Parameter Forecasting

Need for high quality environmental predictions-simulations due to
important applications:

Climate change, Renewable energy
production,Transportation,Marine pollution,Ship safety

Two are the main approaches today:

1. Use of in site or remote sensing observations (e.g. satellite).

2. Use of numerical predictions models governing the atmo-
spheric and wave evolution solved numerically.
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Weather and wave forecasting models are successful in simulating
general environmental conditions on global or intermediate scale but
not on local conditions due to

1. the strong dependence on the initial and lateral conditions,

2. the inability to capture sub-scale phenomena,

3. the parametrization of certain atmospheric or wave procedures.
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To overcome this drawback someone can

1. increase the model resolution,

2. improve the initial conditions based on assimilation sys-
tems,

3. filter-optimize the outputs of the model using statistical
models (MOS methods, Neural networks, Kalman filters).

In all previous options a ”cost function” measuring the bias
(”the distance”) of the model should be minimized.

When the distance/cost-function is measured by means
of classical Euclidean Geometry tools is it correctly

estimated?
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The role of Information Geometry (IG)

• IG is a relatively new branch of Mathematics which applies meth-
ods and techniques of non-Euclidean geometry to stochastic pro-
cesses.

• Given two probability distributions or two data sets we can define
a notion of distance between them.

• In Euclidean/flat geometry functions are based on least square
methods.

• IG shows that this assumption is false, in general, and provides
a theoretical recipe to avoid such simplifications.

• IG naturally introduces geometrical entities (Riemannian met-
rics, distances, curvature and affine connections) for samilies of
probability distributions (manifolds).
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The minimum distance between two elements f1 and f2 of a
statistical manifold S is defined by the corresponding geodesic ω

which is the minimum length curve that connects them. Such a
curve

ω = (ωi) : < → S (1)

satisfies the following system of 2nd order differential
equations:

ω
′′

i (t) +
n∑

j,k=1

Γijk (t)ω
′

j (t)ω
′

k (t) = 0, i = 1, 2, . . . , n. (2)

under the conditions ω (0) = f1, ω (1) = f2 .
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The two parameter Weibull distributions have been proved a good
choice for fitting wind and wave data.

These distributions form a 2-dimensional statistical manifold with
ξ=[α,β], Ξ = {[α,β]; α and β>0} (where α is the shape and β the

scale parameter) and

p (x) =
α

β

(
x

β

)α−1
e−(xβ)

α

, α, β > 0. (3)
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Let us have ξ0=[α0,β0], ξ1=[α1,β1] two members of the Weibull
statistical manifold, then the previous system becomes:

ω
′′

1 (t) +
6
(
γα0 − α0 − π2

6

)
π2β0

(
ω

′

1 (t)
)2

+
12
(
γ2 − 2γ + π2

6 + 1
)

π2α0
ω

′

1 (t)ω
′

2 (t) −

6 (1− γ) β0
(
γ2 − 2γ + π2

6 + 1
)

π2a3

(
ω

′

2 (t)
)2

= 0

ω
′′

2 (t)−
α3
0

π2β20

(
ω

′

1 (t)
)2

+
12α0 (1− γ)

π2β0
ω

′

1 (t)ω
′

2 (t) −

6
(
γ2 − 2γ + π2

6 + 1
)

π2α0

(
ω

′

2 (t)
)2

= 0

under the conditions ω (0) =

[
α0

β0

]
, ω (1) =

[
α1

β1

]
where ω (t) =

[
ω1(t)
ω2(t)

]
and is γ = the Euler gamma.
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So, we need to study the numerical solution of the
following system of differential equations

ω
′′

1 + a11(ω
′

1)
2 + a12ω

′

1ω
′

2 + a22(ω
′

2)
2 = 0

ω
′′

2 + b11(ω
′

1)
2 + b12ω

′

1ω
′

2 + b22(ω
′

2)
2 = 0 (4)

under the conditions

ω1 (0) = ω0
1, ω2 (0) = ω0

2, ω1 (1) = ωN+1
1 , ω2 (1) = ωN+1

2 .

This is a second order Boundary Value Problem of a form

ω̃
′′

= F (ω̃, ω̃
′
) where ω̃ =

[
ω1

ω2

]
defined on the interval [0, 1].



Home Page

Title Page

JJ II

J I

Page 11 of 45

Go Back

Full Screen

Close

Quit

Finite Differences approach
We divide [0, 1] into N + 1 equal subintervals with endpoints

ti = 0 + ih, for i = 0, 1, . . . , N,N + 1.
If the exact solution has a bounded fourth derivative we can
discretize and replace ω

′′

1(ti),ω
′′

2(ti),ω
′

1(ti),ω
′

2(ti) by the finite
differences :

ω
′′

1(ti) =
ω1(ti+1)− 2ω1(ti) + ω1(ti−1)

h2
− h2

12
ω

(4)
2 (ξi)

ω
′′

2(ti) =
ω2(ti+1)− 2ω2(ti) + ω2(ti−1)

h2
− h2

12
ω

(4)
2 (ξi)

ω
′

1(ti) =
ω1(ti+1)− ω1(ti−1)

2h
− h2

6
ω

(3)
1 (ηi)

ω
′

2(ti) =
ω2(ti+1)− ω2(ti−1)

2h
− h2

6
ω

(3)
2 (ηi)

for some ξi, ηi in the interval (ti−1, ti+1).
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The numerical finite differences method results when we substitute
the above to the differential equation the error terms are deleted

and the boundary conditions are employed:

ω1 (0) = ω0
1, ω2 (0) = ω0

2, ω1 (1) = ωN+1
1 , ω2 (1) = ωN+1

2 .

and we approximate ωi1 ≈ ω1(ti), ω
i
2 ≈ ω2(ti) for i = 1, . . . , N .

The outcome is a nonlinear system of 2N equations with 2N
unknowns of the form

F̂ (ω̂) = 0

where 0 = [0, . . . , 0]
T

and ω̂ = [ω1
1, . . . , ω

N
1 , ω

1
2, . . . , ω

N
2 ]

T
.
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which we solve using Newton’s method.

ω̂(k) = ω̂(k−1) − J−1(ω̂(k−1))F̂ (ω̂(k−1)) k = 1, 2, . . .

where ω̂(0) is given.

Direct computation of the inverse of the 2N × 2N Jacobian matrix
J and multiplication with F̂ (ω̂(k−1)) is not suggested

We transform our problem

ω̂(k) = ω̂(k−1) − J−1(ω̂(k−1))F̂ (ω̂(k−1))⇔
ω̂(k−1) − ω̂(k) = J−1(ω̂(k−1))F̂ (ω̂(k−1))⇔
J(ω̂(k−1))(ω̂(k−1) − ω̂(k)) = F̂ (ω̂(k−1))⇔

J(ω̂(k−1))X = F̂ (ω̂(k−1))

where
X = (ω̂(k−1) − ω̂(k))
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In each step we solve

J(ω̂(k−1)) ·X = F̂ (ω̂(k−1))
factorize

J(ω̂(k−1)) = L · U
so solve

L · U ·X = F̂ (ω̂(k−1))
Let Y = U ·X

solve the lower triangular system L · Y = F̂ (ω̂(k−1)),
solve the upper triangular system U ·X = Y,

update the solution
ω̂(k) = ω̂(k−1) −X

The classical approach is to apply the common LU factorization
approach to the Jacobian matrix J in each step or take advantage of

its specific form.
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The Jacobian of the specific problem
is a block matrix of the form:

J =

(
A B
C D

)
where A,B,C,D are tridiagonal matrices.

We apply row interchanges and bring J to the following form:

−8 4− a1 0 0 . . . 0 0 0 −b1 0 0 . . . 0 0
4 + d2 −8 4− a2 0 . . . 0 0 b2 0 −b2 0 . . . 0 0
c2 0 −c2 0 . . . 0 0 4 + d2 −8 4− d2 0 . . . 0 0
0 4 + a3 −8 4− a3 . . . 0 0 0 b3 0 −b3 . . . 0 0
0 −c1 0 0 . . . 0 0 −8 4− d1 0 0 . . . 0 0
0 c3 0 −c3 . . . 0 0 0 4 + d3 −8 4− d3 . . . 0 0
0 0 4 + a4 −8 . . . 0 0 0 0 b4 0 . . . 0 0
0 0 c4 0 . . . 0 0 0 0 4 + d4 −8 . . . 0 0
0 0 0 4 + a5 . . . 0 0 0 0 0 b5 . . . 0 0
0 0 0 c5 . . . 0 0 0 0 0 4 + d5 . . . 0 0
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
0 0 0 0 . . . 0 0 0 0 0 0 . . . . .
0 0 0 0 . . . 4 + an −8 0 0 0 . . . 0 bN 0
0 0 0 0 . . . cn 0 0 0 0 . . . 0 4 + dN −8


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Now we can apply a Modified LU factorization

1st Step: Zero only two elements under the main diagonal.
2nd-3rd row: Update only 5 elements in every row (the 2nd, 3rd,
(N+1)-th, (N+2)-th, (N+3)-th)
Right here we have a significant reduction of floating point operations
as the classical LU updates the entries of an (2N − 1) × (2N − 1)
submatrix.

2nd Step: Zero only 4 elements under the main diagonal.
3nd-6th row: Update only 6 elements in every row (the 3rd,4th,
N + 1, . . . , N + 4).

3rd Step: Zero only 5 elements under the main diagonal.
4rd-8th row: Update only 6 elements in every row (the 4th,5th,
N + 1, . . . , N + 6).

... and so on
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In every step

• The number of elements which must be zeroed is increased per 1
until the N − 2-th step.

• The number of elements in every row which must be updated is
increased per 1 until the (N-4)-th step.

• Then these numbers are decreased per 1 in every step.
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Computational Complexity

Floating point operations for triangularizing the 2N × 2N Jacobian
matrix through

• modified gaussian elimination are O(2N
3

3
).

• classical LU factorization requires O(8N
3

3
).

Modified LU is 4 times cheaper than the classical LU.

Remark

• Reduction is achieved in the first half of the factorization (update
specific entries and not whole submatrices).

• Second half of the procedure requires the same cost as classical
LU.



Home Page

Title Page

JJ II

J I

Page 19 of 45

Go Back

Full Screen

Close

Quit

Numerical Justification
We compare the two LU approaches for matrices which have the
form of the Jacobian J and random elements. We average the

computational time needed for sets of 50 matrices.

matrix dim. classical LU Modified LU % of gain
200 0.0176 0.0096 45.6654
500 0.3188 0.0753 76.3882
1000 3.8151 0.7283 80.9093
2000 35.2260 8.7771 75.0834
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Newton’s Method

F̂ : R2N → R2N : F̂ (ω̂) = 0

the system of the 2N non linear equations.

ω̂(k) = ω̂(k−1) − J(ω̂(k−1))−1 · F̂ (ω̂(k−1)), k = 1, 2, . . . .

Complexity

O(k0 · 8N
3

3
) flops for the classical LU factorization

O(k0 · 2N
3

3
) flops for modified LU approacch

for k0 iterations.
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Brezinski’s Work

• C. Brezinski, Projection Methods for Systems of Equations
(North-Holland, Amsterdam, 1997)

• C. Brezinski, A classification of quasi-Newton methods
(Numer Algor, 33, 1997, 123-135)

classified and proposed theoretically, Quasi Newton methods.

We implement numerically four of them.

Since the Jacobian matrix J of our system is of a special form, we
adapt these methods to J in order to reduce the required floating

point operations.
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Quasi Newton Methods

ω̂(k) = ω̂(k−1) − Λk−1 · F̂ (ω̂(k−1)), k = 1, 2, . . . .

where Λk ∈ R2N×2N .

Brezinski studied the cases where

• Λk is a scalar matrix

• Λk is a diagonal matrix

• Λk is a full matrix
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Scalar matrix case (SMC)

ω̂(k) = ω̂(k−1) − Λk−1 · F̂ (ω̂(k−1))

Λk = λk · I

λk =
(J(ω̂(k)) · F̂ (ω̂(k)), F̂ (ω̂(k)))

(J(ω̂(k)) · F̂ (ω̂(k)), J(ω̂(k)) · F̂ (ω̂(k))

Complexity

For our problem demands O(k1 · 18N) flops for k1 iterations plus

the computation of F̂ and J at the point ω̂(k) at every iteration.

In general, SMC requires O(k1 · (4N 2)) flops for solving an
2N × 2N system of non linear equations.

The reduction in complexity due to the special structure of the
jacobian matrix J .
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Diagonal Matrix Case 1 (DMC1)

ω̂(k) = ω̂(k−1) − Λk−1 · F̂ (ω̂(k−1))

ω̂(k) = ω̂(k−1) − F̃ (ω̂(k−1)) · Λ̃k−1

F̃ (ω̂(k)) = diag(F̂1(ω̂
(k)), F̂2(ω̂

(k)), . . . , F̂2N(ω̂(k)))

Λ̃k = (λ1
k, λ

2
k, . . . , λ

2N
k )T = J(ω̂(k−1))−1 · F̂ (ω̂(k−1))

(Newton’s method with a diagonal preconditioner)

Complexity

We use the modified LU factorization in order to compute
J(ω̂(k−1))−1 · F̂ (ω̂(k−1)) reducing significant the required flops.

O(k2 · 2N
3

3
) flops for k2 iterations plus the computation of F̂ and J

at the point ω̂(k) at every iteration.

In general, O(k2 · (8N
3

3
)) flops for solving an 2N × 2N system.
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Diagonal Matrix Case 2 (DMC2)

ω̂(k) = ω̂(k−1) − Λk−1 · F̂ (ω̂(k−1))

ω̂(k) = ω̂(k−1) − F̃ (ω̂(k−1)) · Λ̃k−1

F̃ (ω̂(k)) = diag(F̂1(ω̂
(k)), F̂2(ω̂

(k)), . . . , F̂2N(ω̂(k)))

Λ̃k is computed using forward differences, thus,
Λ̃k = ∆F̃ (ω̂(k−1))−1 ·∆ω̂(k−1)

Complexity

DMC2 demands O(k2 · 8N) flops for k2 iterations plus the

computation of F̂ and J at the point ω̂(k) at every iteration.
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Full Matrix Case (FMC)

ω̂(k) = ω̂(k−1) − Λk−1 · F̂ (ω̂(k−1))

Λk =
F̂ (ω̂(k)) · F̂ (ω̂(k))T · J(ω̂(k))T

(J(ω̂(k)) · F̂ (ω̂(k)), J(ω̂(k)) · F̂ (ω̂(k))

Complexity

The FMC algorithm demands O(k3 · 9N 2) flops at every iteration

for k3 iterations plus the computation of F̂ and J at the point ω̂(k)

at every iteration.

In general, FMC requires O(k3 · (13N 2)) flops for solving an
2N × 2N system of non linear equations.
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24 Test Problems based on Weibull distribution

model data model data satelite
no current with current data

Weibull Parameters shape α0 scale β0 shape α0 scale β0 shape α1 scale β1
Jan 1.600 1.010 1.726 1.095 2.523 1.441
Feb 1.500 1.400 1.571 1.464 2.450 1.762
Mar 1.462 1.132 1.578 1.225 2.560 1.509
Apr 1.564 0.695 1.719 0.754 2.140 1.012
May 1.533 0.608 1.608 0.661 1.576 0.780
Jun 2.333 0.633 2.542 0.680 3.759 0.759
Jul 2.557 0.837 2.688 0.876 3.515 0.960
Aug 3.099 0.716 3.341 0.759 4.938 0.889
Sep 2.418 0.754 2.580 0.800 3.491 0.968
Oct 1.629 0.551 1.850 0.609 2.204 0.665
Nov 1.446 0.892 1.499 0.919 1.911 1.224
Dec 1.435 1.216 1.512 1.283 2.208 1.442

Refer to the area of Levantive area in South Egypt Mediterranean
Sea.
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Reference Solutions using Mathematica

• NDSolve of Mathematica has been used to solve the 24 test prob-
lems.

• The Mathematica uses Shooting method and we have set accuracy
options (Working Precision, Accuracy Goal, Accuracy Goal) so
to get an considerably accurate solution.

• The Mathematica produces a ”continuous” interpolating form of
the solution.

• The resulted solution has been substituted in the test differential
equations and for an abscissae on [0, 1] of width 10−5 while the
maximum residual has been recorded.

• Such solutions can be used as high accurate reference solutions
for the comparison to the other numerical methods which attain
a significantly lower precision.
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the reference solution of problem Jun with current

0.2 0.4 0.6 0.8 1.0

2.0

2.2

2.4

0.2 0.4 0.6 0.8 1.0

1.15

1.20

1.25

1.30

1.35

1.40

the error 1.11× 10−15

0.2 0.4 0.6 0.8 1.0

-4. ´ 10-16

-2. ´ 10-16

2. ´ 10-16

4. ´ 10-16

0.2 0.4 0.6 0.8 1.0

-1.5 ´ 10-16

-1. ´ 10-16

-5. ´ 10-17

5. ´ 10-17

1. ´ 10-16
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the reference solution of Aug with current (stiffness)

0.2 0.4 0.6 0.8 1.0

3.5

4.0

4.5

0.2 0.4 0.6 0.8 1.0

-0.5

0.5

the error 6.25× 10−13

0.2 0.4 0.6 0.8 1.0

-4. ´ 10-15

-2. ´ 10-15

2. ´ 10-15

4. ´ 10-15

0.2 0.4 0.6 0.8 1.0

-2. ´ 10-14

-1. ´ 10-14

1. ´ 10-14

2. ´ 10-14
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Numerical tests

• We calculate and program the analytical form of the of F and
Jacobian J . We choose N = 100 so we have a system of 200
equations.

• For the 24 problems we produce a reference solution.

• For an initial guess we use a perturbation with random numbers
of the initial conditions on t = 0.



Home Page

Title Page

JJ II

J I

Page 32 of 45

Go Back

Full Screen

Close

Quit

Numerical tests

• We solve numerically the 24 test problems for tolerances
10−3, 10−4, . . . , 10−13 to compare efficiency and computational
cost. We use two error measures at the grid points.

– The first one is ‖F̂ (ω̂sol)‖∞ the maximum absolute value that
the numerical solution fails to satisfy the nonlinear problem
resulted by the finite difference method.

– The second one is the ‖ω̂so− ω̂ref‖∞ maximum absolute value
of the difference of the numerical solution and the reference
solution.

• We investigate the sensitivity in the choice of initial guess for tol-
erances 10−3, 10−4, . . . , 10−13 with respect to its distance from the
reference solution, in order to evaluate the range of convergence
for each method.
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Accuracy of the Newton’s Method
Both NR with classical LU and NR with modified LU have the same

iterations and similar error measures at the grid points for all 24
problems.

Average

no of iter. time in secs ‖F̂ (ω̂sol)‖∞ ‖ω̂so − ω̂ref‖∞
TOL clas. mod. clas. mod. clas. mod. clas. mod.
10−8 8.33 8.04 0.1529 0.099 0.355e-10 0.176e-10 0.605e-5 0.605e-5
10−10 8.7 8.67 0.1731 0.1196 0.080e-12 0.173e-12 0.123e-4 0.123e-4

In some problems the iteration diverges for both approaches (e.g.
Problem Aug with Current).
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Time comparisons.
We compare the average of the average times time to solve each of

the 24 problem for 50 different choices of initial conditions using NR
with classical LU and NR with modified LU.

Average
TOL clas. mod. % of gain
10−8 0.199 0.135 32.70
10−9 0.209 0.143 31.53
10−10 0.217 0.147 32.05
10−11 0.224 0.151 32.57
10−12 0.362 0.169 40.44
10−13 0.952 0.088 56.41
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General remarks for the comparison of mod-NR,
SMC,DMC1,DMC2,FMC.

We solve for TOL = 10−3, . . . , 10−12 all the 24 problems for a
common initial condition each time and compare the average values

of the results.

• DMC1 does not work at all. The preconditioning matrix is sin-
gular.

• DMC2 works only for TOL = 10−3, 10−4. For smaller tolerances
it fails as in Λ̃k = ∆F̃ (ω̂(k−1))−1 · ∆ω̂(k−1) the denominator be-
comes less than eps.

• SMC and works only for TOL = 10−3, . . . , 10−8. For smaller
tolerances even if the methods do not seem to diverge the iteration
stops as the denominator of

#

(J(ω̂(k)) · F̂ (ω̂(k)), J(ω̂(k)) · F̂ (ω̂(k))

becomes less than eps.
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Mean # of Iterations comparisons.
for problems with convergence

average
TOL mod-NR SMC FMC
10−3 7.4 485 95
10−4 7.6 3460 835
10−5 8.4 6853 2959
10−6 8.6 10057 7363
10−7 9.2 13429 10596
10−8 9.6 16296 13632
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Mean time in secs comparisons.
for problems which converge.

average
TOL mod-NR SMC FMC
10−3 0.098 0.166 0.443
10−4 0.098 4.062 1.070
10−5 0.112 14.684 8.063
10−6 0.117 35.450 24.140
10−7 0.126 56.277 44.580
10−8 0.123 85.410 71.087

No mater the theoretical complexity cost,
the time needed for the solution using modified Newton’s method is

considerably smaller.
SMC takes the longer time over the three methods.
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Mean ‖F̂ (ω̂sol)‖∞ comparisons.
for problems which converge.

Average
TOL mod-NR SMC FMC
10−3 1.55e-6 1.83e-3 9.92e-3
10−4 6.77e-8 1.45e-4 1.09e-3
10−5 7.29e-9 1.53e-5 1.13e-4
10−6 1.93e-9 1.48e-6 1.11e-5
10−7 8.24e-11 1.62e-7 1.19e-6
10−8 2.82e-11 1.71e-8 1.20e-7

Newton’s method attains a better convergence.
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Mean ‖ω̂so − ω̂ref‖∞ comparisons.
for problems which converge.

Average
TOL mod-NR SMC FMC
10−3 2.87e-6 2.53e-1 4.17e-1
10−4 1.59e-5 3.77e-2 2.05e-1
10−5 3.49e-6 3.96e-3 2.96e-2
10−6 1.56e-5 3.94e-4 2.88e-3
10−7 2.53e-5 6.61e-5 3.29e-4
10−8 3.57e-6 7.14e-6 3.45e-5

Newton’s method goes closer to the reference solution for the bigger
tolerances
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mod-NR Sensitivity in initial condition choice.

Number of convergent solution of problems (out of 24).

‖ω̂0 − ω̂ref‖∞ ≤
TOL 0.05 0.10 0.2 0.5
10−3 24 24 21 3
10−4 24 24 22 1
10−5 24 24 23 2
10−6 24 24 21 2
10−7 24 24 23 2
10−8 24 24 21 1
10−9 24 24 21 1
10−10 24 24 19 2
10−11 24 24 23 3
10−12 24 24 23 3
10−13 24 22 19 3

Very sensitive in the choice of initial guess. Shorter interval of
convergence.
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SMC Sensitivity in initial condition choice.

Number of convergent solution of problems (out of 24).

‖ω̂0 − ω̂ref‖∞ ≤
TOL 0.05 0.10 0.2 0.5
10−3 24 24 24 24
10−4 24 24 24 24
10−5 24 24 24 24
10−6 24 24 24 24
10−7 24 24 24 24
10−8 24 24 24 24
10−9 12 13 13 14

Longer interval of convergence. Method does not diverge for
TOL = 10−9.
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SMC average ‖F̂ (ω̂sol)‖∞ comparisons

for all 24 problems.

‖ω̂0 − ω̂ref‖∞ ≤
TOL 0.05 0.10 0.2 0.5
10−3 1.78e-3 1.61e-3 1.32e-3 9.40e-3
10−4 1.00e-4 1.00e-4 1.08e-4 1.11e-4
10−5 1.10e-5 1.10e-5 1.10e-5 1.11e-5
10−6 1.20e-6 1.19e-6 1.22e-6 1.21e-6
10−7 1.27e-7 1.07e-7 1.27e-6 1.26e-7
10−8 1.40e-8 1.40e-8 1.41e-8 1.34e-8
10−9 1.32e-8 1.20e-8 1.30e-8 1.25e-8

The iteration stops as the denominator of

#

(J(ω̂(k)) · F̂ (ω̂(k)), J(ω̂(k)) · F̂ (ω̂(k))

becomes less than eps.
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FMC Sensitivity in initial condition choice.

Number of solution of convergent problems (out of 24).

‖ω̂0 − ω̂ref‖∞ ≤
TOL 0.05 0.10 0.2 0.5
10−3 24 24 24 24
10−4 24 24 24 24
10−5 24 24 24 24
10−6 24 24 24 24
10−7 24 24 24 24
10−8 24 24 24 24
10−8 15 14 10 14

Long interval of convergence again. Method does not diverge for
TOL = 10−9.
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FMC average ‖F̂ (ω̂sol)‖∞ comparisons

for all 24 problems.

‖ω̂0 − ω̂ref‖∞ ≤
TOL 0.05 0.10 0.2 0.5
10−3 7.14e-3 7.80e-3 8.16e-3 8.27e-3
10−4 8.46e-4 8.31e-4 8.46e-4 8.78e-4
10−5 8.99e-5 9.49e-5 9.62e-5 9.51e-5
10−6 1.02e-5 1.03e-5 1.04e-5 1.04e-5
10−7 1.08e-6 1.07e-6 1.09e-6 1.08e-6
10−8 1.09e-7 1.11e-7 1.56e-7 1.15e-7
10−9 1.30e-8 1.34e-8 1.42e-8 1.31e-8

The iteration stops as the denominator of

#

(J(ω̂(k)) · F̂ (ω̂(k)), J(ω̂(k)) · F̂ (ω̂(k))

becomes less than eps.
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SMC and FMC can be used as starting procedures.

For problem Aug with current mod NR diverges. We can use either
SMC or FMC to get an initial guess for NR and then solve with NR.

TOL = 10−11

no of iter. ‖F̂ (ω̂sol)‖∞ ‖ω̂so − ω̂ref‖∞
mod-NR 182 4.38e+177 9.03e+88

SMC 9219 1.75e-6 7.51e-4
mod-NR 7 4.78e-14 3.74e-4

FMC 5602 1.39e-5 3.40e-3
mod-NR 7 5.59e-14 3.74e-4


