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Selective Imaging of Extended Reflectors in Two-Dimensional Waveguides∗

Chrysoula Tsogka†, Dimitrios A. Mitsoudis‡, and Symeon Papadimitropoulos†

Abstract. We consider the problem of selective imaging extended reflectors in waveguides using the response
matrix of the scattered field obtained with an active array. Selective imaging amounts to being able
to focus at the edges of a reflector, which typically give rise to weaker echoes than those coming
from its main body. To this end, we propose a selective imaging method that uses projections on
low-rank subspaces of a weighted modal projection of the array response matrix, ̂P(ω). We analyze
theoretically our imaging method for a simplified model problem where the scatterer is a vertical
one-dimensional perfect reflector. In this case, we show that the rank of ̂P(ω) equals the size of
the reflector divided by the cross-range array resolution. We also derive analytic expressions for
the singular vectors of ̂P(ω) and carry out a detailed theoretical analysis of our selective imaging
functional. Our numerical simulations are in very good agreement with the theory and illustrate
the robustness of our imaging functional for reflectors of various shapes.
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1. Introduction. In this work we consider the problem of detecting and imaging extended
reflectors submerged in the sea, using acoustic waves produced by an active array. The array
consists of N transducers that act as sources and receivers. The data that we are going to use
for imaging is assumed to be given in the form of the so-called array response matrix in the
frequency domain, i.e., an N ×N complex matrix whose entries are the Fourier transforms of
the time traces of the echoes recorded at all receivers when each source emits a signal. The term
“extended” refers to reflectors which are comparable in size to the acoustic wavelength. Here,
the sea is modeled as an acoustic waveguide consisting of a single homogeneous water layer
confined above by the sea surface and below by the seafloor, both assumed to be horizontal.
Thus, our waveguide is an infinite strip of constant depth.

The imaging problem that we wish to solve is the following: Assuming that the extended
reflector is illuminated by an active vertical array which spans the whole depth of the wave-
guide, and that the array response matrix is known, we want to image an extended reflective
scatterer located in the waveguide. To this end we define a search domain (a bounded subset

∗Received by the editors June 10, 2013; accepted for publication (in revised form) September 6, 2013; pub-
lished electronically December 19, 2013. The first two authors’ work was partially supported by the European
Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agree-
ment 239959. The second author’s work was also supported by the European Union’s Seventh Framework Programme
(FP7-REGPOT-2009-1) under grant 245749 through ACMAC.

http://www.siam.org/journals/siims/6-4/92423.html
†Department of Applied Mathematics, University of Crete, and IACM/FORTH, Heraklion 70013, Greece (tsogka@

tem.uoc.gr, spapadem@tem.uoc.gr).
‡Archimedes Center for Modeling, Analysis & Computation (ACMAC), Department of Applied Mathematics,

University of Crete, and IACM/FORTH, Heraklion 70013, Greece (dmits@tem.uoc.gr).

2714

http://www.siam.org/journals/siims/6-4/92423.html
mailto:tsogka@tem.uoc.gr
mailto:tsogka@tem.uoc.gr
mailto:spapadem@tem.uoc.gr
mailto:dmits@tem.uoc.gr


SELECTIVE IMAGING OF REFLECTORS IN TWO-DIMENSIONAL WAVEGUIDES 2715

of our waveguide) and use appropriate imaging functionals, which have the property that their
values, when they are computed and graphically displayed in the search domain, exhibit peaks
that indicate the presence of the scatterer. Examples of such imaging functionals include the
Kirchhoff migration functional (see [3, 5]) and the matched field functional (see [16]).

Another question that often arises in imaging of extended reflectors is whether we can
create an image which focuses on specific parts of the scatterer. A way to achieve this is
by a selective imaging technique called the subspace projection method [4]. This method is
based on the singular value decomposition (SVD) (see, for example, [10, sect. 2.5]) of the
array response matrix, which helps us to create a filtered version of it which, in turn, will be
used for imaging purposes. This technique was employed in [4] to image extended scatterers
embedded in a homogeneous medium, while in [7] the authors considered selective imaging in
clutter, i.e., propagation media with inhomogeneities that are unknown, cannot be estimated
in detail, and are modeled as random processes.

The concept of selective imaging of extended scatterers has been motivated by the concept
of selective focusing, which concerns the case where there are multiple point (or small) scat-
terers in the medium and, essentially, allows one to distinguish specific scatterers by creating
images that focus separately in each of them. In this direction, the work of Prada and Fink
[20] has been very influential. They have introduced the so-called DORT method (DORT is
an acronym for “decomposition of the time reversal operator” in French), which uses the SVD
of the time reversal operator to focus selectively on scattering obstacles. The experimental
results obtained in [20] show that for small scatterers, the number of nonzero (or significant)
singular values of the response matrix is exactly the number of obstacles contained in the
medium. Furthermore, the use of the corresponding singular vectors as an incident field re-
sults in selective focusing on the scatterers, provided that pairwise they are separated by a
sufficiently large distance. Related works include [17, 19]. When the scatterers are clustered
together, the one-to-one correspondence between the singular vectors of the response matrix
and the scatterers does not hold any longer, and, as a consequence, selective focusing cannot
be achieved with DORT. This issue was addressed in [6], where selective focusing was achieved
by using as illumination an optimal convex combination of the leading singular vectors across
the bandwidth. To the best of our knowledge, the first rigorous mathematical justification of
DORT has been given in [13], where the propagation medium is the free space R3. For the
analysis of DORT in a waveguide environment we refer the reader to the work of Pinçon and
Ramdani [18].

The main goal of the current paper is to propose and analyze a selective imaging method
of extended reflectors in waveguides. Moreover, we want to investigate whether, and how, the
number of “significant” (nonzero) singular values of the array response matrix is related to
the size of the reflector. Relevant works in the same spirit, but for the free space case, include
[26], where an analysis of the response matrix for extended reflectors is presented, and [4],
where the subspace projection method has been analyzed and a relation between the number
of significant singular values and the size of the reflector has been derived.

This paper is organized as follows. In section 2, we formulate the problem, present the
basic features of wave propagation in waveguides, and introduce the relevant notation and
terminology. In section 3 we present the imaging functionals that will be used throughout this
paper. These are the Kirchhoff migration functional and an alternative imaging functional,
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Figure 1. Schematic representation of our waveguide problem and the active array imaging setup.

based on a weighted projection of the response matrix on the propagating modes. In section 4,
we present numerical results of selective imaging for various shapes of extended reflectors.
Section 5 is devoted to the theoretical analysis of the imaging method for a simplified model
problem where the scatterer is a crack, i.e., a vertical one-dimensional perfect reflector. For
this model problem, we derive a relation between the number of significant singular values
of the array response matrix and the size of our scatterer. Specifically, we show that the
number of significant singular values equals the size of the scatterer divided by the array
resolution. This result, which is physically intuitive as pointed out in [14, 22, 23], was first
derived analytically in [5] for a crack in free space and then in [4] for the more general
case of extended reflectors in the so-called Fraunhofer diffraction regime. Here, we derive it
analytically for a crack embedded in a waveguide and observe it numerically for more general
extended reflectors in waveguides. In the case of the crack, we also derive analytic expressions
for the singular vectors of the response matrix, and this allows us to study in detail the
behavior of our selective imaging functional. We offer some concluding remarks in section 6.

2. Formulation of the problem. We consider the problem of detecting and imaging ex-
tended scatterers submerged in the sea using acoustic waves. More precisely, we model a
marine environment by an infinite two-dimensional waveguide R× (0,D) in Cartesian coordi-
nates (z, x), where z denotes the range variable and x the depth (cross-range) variable taken
to be positive downward. Throughout this paper, vectors in Rn are denoted by boldface char-
acters, while vectors in R×(0,D) are denoted by boldface characters with an overscript arrow.
Our waveguide consists of a single water layer with constant density and constant sound speed
c0. A single extended scatterer denoted by O is submerged in the water layer; see Figure 1.
The term “extended” indicates that the typical size of the scatterer is comparable to the
wavelength.

We assume that the total acoustic pressure field ptot(t, �x) satisfies the wave equation

(2.1) Δptot(t, �x)− 1

c20

∂2ptot(t, �x)

∂t2
= f(t, �x),

where the source term is of the form f(t, �x) = − exp(−iωt)δ(t)δ(�x−�xs), modeling a point-like
source with time harmonic dependence located at �xs. The scatterer is assumed to be sound-
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hard; hence a homogeneous Neumann condition is posed on its boundary ∂O. Equation (2.1)
is supplemented with pressure release boundary conditions on the surface and the seafloor,
and we also assume that ptot(t, �x) = 0 for t ≤ 0, expressing that the medium is quiescent
before emission. Taking the Fourier transform

p̂ tot(ω, �x) =

∫
eiωtptot(t, �x) dt,

we obtain from (2.1) the Helmholtz equation

(2.2) −Δp̂ tot(ω, �x)− k2p̂ tot(ω, �x) = δ(�x − �xs),

where k = ω/c0 is the real wavenumber, ω is the angular frequency, and λ = 2π/k is the
wavelength.

Now let {μn,Xn}n=1,2,... denote the eigenvalues and corresponding orthonormal eigenfunc-
tions of the two-point vertical eigenvalue problem

X ′′(x) + μX(x) = 0, x ∈ (0,D), and X(0) = X(D) = 0,

i.e.,

(2.3) μn = (nπ/D)2, Xn(x) =
√

2/D sin(
√
μnx), n = 1, 2, . . . .

The family of eigenfunctions {Xn}n=1,2,... forms an orthonormal basis of L2[0,D]. We assume
that for each frequency there exists an index M such that

μM < k < μM+1.

In other words, the wavenumber does not coincide with any of the mode cutoff frequencies,
and the first M eigenvalues correspond to the propagating modes, while the rest correspond
to the evanescent modes. Let us also denote the horizontal wavenumbers by

(2.4) βn =

{ √
k2 − μn, 1 ≤ n ≤ M,

i
√

μn − k2, n ≥ M + 1.

Moreover, let Ĝ(�x, �xs) be the outgoing Green’s function of the Helmholtz operator −Δ ·
−k2·, evaluated at �x = (z, x) ∈ R× (0,D) due to a point source located at �xs = (zs, xs). (In
the underwater acoustics community, a point source in plane geometry is usually referred to
as a line source [15].) Then it is well known (see, e.g., [15, 18]) that Ĝ admits the following
normal mode representation:

(2.5) Ĝ(�x, �xs) =
i

2

∞∑
n=1

1

βn
eiβn|z−zs|Xn(x)Xn(xs),

where {μn,Xn} and βn are defined in (2.3) and (2.4), respectively.
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2.1. Array imaging setup. We consider a one-dimensional vertical active array spanning
the whole depth of the waveguide and located at range z = za ≥ 0; see Figure 1. The array
consists of N transducers which act as both sources and receivers. We assume that they are
closely spaced and uniformly distributed on the array with an interelement array distance
h = D/(N + 1); h is usually called the array pitch.

Also let Π̂(ω) denote the N ×N complex array response matrix in the frequency domain,
whose (r, s) entry is defined as the Fourier transform of the time traces recorded at the rth
transducer due to a δ-function impulse generated by the sth transducer for a given frequency
ω. In what follows, the data that we are going to use for imaging is the array response matrix
for the scattered field in the frequency domain, created by subtracting the array response
matrix for the incident field from the corresponding one for the total field.

3. Imaging. Let us first define the search domain S as a bounded subdomain of our
waveguide that may contain a scatterer (see Figure 1). S is discretized, using a rectangular
grid, and �y s = (zs, xs) denotes an arbitrary node in S. We are interested in creating an
image of the search domain S. A classical imaging method is Kirchhoff migration (KM) [3, 5],
defined by

(3.1) IKM(�y s, ω) =
N∑
r=1

Ĝ(�xr, �y
s, ω)

N∑
s=1

Π̂(�xr, �xs, ω) Ĝ(�xs, �y
s, ω)

for a single frequency ω and �y s ∈ S. Here the bars denote complex conjugation. KM consists
in backpropagating the signals from each receiver �xr to a point �y s in the search domain and
then back to the source �xs. The image is the sum of the backpropagated signals for all sources
and receivers.

In (3.1) we have defined the imaging functional for a single frequency ω. When we have
multifrequency data, we can compute instead

(3.2) IKM(�y s) =
∣∣∣∑

ω

IKM(�y s, ω)
∣∣∣.

KM is widely used in seismic imaging and exploration geophysics; in these applications the
arrays and the bandwidth are typically very large. This is a setup in which perfect imaging
resolution can be achieved. Indeed, in this case the ideal point spread function (i.e., the image
of a point scatterer), which is a Dirac distribution, can be obtained, at least asymptotically,
as the array aperture and the bandwidth tend to infinity (cf. [3]). To be more precise, this
result is obtained for a slight modification of (3.1) that uses a weighing factor that takes into
account the source-receiver geometry.

3.1. Selective imaging. In selective imaging we are interested in reconstructing specific
parts of the reflector such as, for example, its boundary. A way to achieve this is by means of
the subspace projection method [4], which is based on the SVD of the N ×N array response
matrix Π̂(ω) in the frequency domain. As remarked in [4], the SVD of Π̂(ω) may serve as a
filter which enables us to identify reflections emanating from the edges of the scatterer. Such
reflections are typically weaker than, and therefore masked by, those coming from the body of
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the scatterer. The SVD of Π̂(ω) is a factorization of the form (see, for example, [10, sect. 2.5])

Π̂(ω) = U(ω)Σ(ω)V ∗(ω),

where Σ is a diagonal matrix containing the singular values σi of Π̂(ω) in descending order,
and U, V are unitary matrices containing the left and right singular vectors, respectively. For
the rest of this section, we will occasionally omit the ω’s for the sake of notational convenience.

Now, let us write the SVD of Π̂(ω) as a sum of the form

Π̂(ω) =

ρ∑
i=1

σiUiV
∗
i ,

where ρ = rank(Π̂(ω)), so that σ1 ≥ · · · ≥ σρ > σρ+1 = · · · = σN = 0, and Ui, Vi are the left
and right singular vectors, respectively. Then a filtered version of the response matrix may
be written in the form

D[Π̂(ω)] =

ρ∑
i=1

diσiUiV
∗
i ,

where the coefficients di are called the filter weights. We will simply consider di ∈ {0, 1},
which amounts to saying that if di = 1, then the ith singular vector is taken into account in
the filtered version of the response matrix, while if di = 0, it is not.

We will assume in the following that the scatterer and the search domain are located
far enough from the array to allow us to retain only the propagating modes in (2.5). Then,
substituting Ĝ, given by (2.5), into (3.1), we may write the KM functional in the form

IKM(�y s, ω) = −1

4

N∑
s,r=1

Π̂(�xr, �xs, ω)

×
M∑

m,n=1

e−i(βm+βn)|za−zs|

βmβn
Xm(xs)Xm(xs)Xn(xr)Xn(x

s).(3.3)

Let us also define the functional

IKM,f(�y s, ω) = −1

4

N∑
s,r=1

(
D[Π̂(ω)]

)
rs

×
M∑

m,n=1

e−i(βm+βn)|za−zs|

βmβn
Xm(xs)Xm(xs)Xn(xr)Xn(x

s),(3.4)

derived by replacing the full response matrix by its filtered version. For multifrequency data,
we define

(3.5) IKM,f(�y s) =
∣∣∣∑

ω

IKM,f(�y s, ω)
∣∣∣.
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Finally, we introduce the functionals

IKM
J (�y s, ω) = −1

4

N∑
s,r=1

(σJ(ω)UJ (ω)V
∗
J (ω))rs

×
M∑

m,n=1

e−i(βm+βn)|za−zs|

βmβn
Xm(xs)Xm(xs)Xn(xr)Xn(x

s)(3.6)

and

(3.7) IKM
J (�y s) =

∣∣∣∑
ω

IKM
J (�y s, ω)

∣∣∣,
which are derived from (3.4) and (3.5), respectively, when dJ = 1 and di = 0 for all i �= J , in
other words, when we consider projection onto the single Jth singular vector of the response
matrix.

3.2. Modal projection and selective imaging. For an array spanning the whole waveguide
depth with an array pitch h small enough, we can approximate the double sum in (3.3) by a
double integral over [0,D] to get

IKM(�y s, ω) ≈ − 1

4h2

∫ D

0
dxs

∫ D

0
dxr Π̂(�xs, �xr, ω)

×
M∑

m,n=1

e−i(βm+βn)|za−zs|

βmβn
Xm(xs)Xm(xs)Xn(xr)Xn(x

s)

= − 1

4h2

M∑
m,n=1

e−i(βm+βn)|za−zs|

βmβn
Xm(xs)Xn(x

s)

×
∫ D

0

∫ D

0
Π̂(�xs, �xr, ω)Xm(xs)Xn(xr) dxr dxs.(3.8)

Now, let us introduce an M ×M matrix Q̂(ω) with entries

(3.9) Q̂mn(ω) =

∫ D

0
dxs

∫ D

0
dxr Π̂(�xs, �xr, ω)Xm(xs)Xn(xr)

for m,n = 1, 2, . . . ,M .
In view of (3.9), (3.8) may be equivalently written as

(3.10) IKM(�y s, ω) ≈ − 1

4h2

∑
m,n

e−i(βm+βn)|za−zs|

βmβn
Xn(x

s)Xm(xs)Q̂mn(ω).

Instead of using (3.10) we propose using the following imaging functional:

(3.11) ĨKM(�y s, ω) = − 1

4h2

M∑
m,n=1

e−i(βm+βn)|za−zs|Xn(x
s)Xm(xs)P̂mn(ω),
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where the M ×M matrix P̂ is defined as

(3.12) P̂mn(ω) = βmβnQ̂mn, m, n = 1, . . . ,M.

Note that P̂mn(ω) is a weighted modal projection of the array response matrix. Our numerical
results indicate (see section 4) that (3.11) is a robust selective imaging functional, while this
is not the case for (3.10). Our choice of imaging with (3.11) is also justified by the theoretical
analysis carried out in section 5 for the case of a simple scatterer geometry.

For multifrequency data, we define

(3.13) ĨKM(�y s) =
∣∣∣∑

ω

ĨKM(�y s, ω)
∣∣∣.

We also introduce functionals for selective imaging, as we have done in (3.4)–(3.7), using
filtered versions of P̂. The only thing that changes in this process is the size of the response ma-
trix. Now we are dealing with an M×M matrix, where M denotes the number of propagating
modes. Specifically, for a single frequency ω, we let

(3.14) ĨKM,f(�y s, ω) = − 1

4h2

M∑
m,n=1

e−i(βn+βm)|za−zs|Xn(x
s)Xm(xs)

(
D[P̂(ω)]

)
mn

,

while for multifrequency data we define

(3.15) ĨKM,f(�y s) =
∣∣∣∑

ω

ĨKM,f(�y s, ω)
∣∣∣.

Furthermore, we define

(3.16) ĨKM
J (�y s, ω) = − 1

4h2

M∑
m,n=1

e−i(βn+βm)|za−zs|Xn(x
s)Xm(xs)

(
σJ(ω)UJ(ω)V

∗
J (ω)

)
mn

and

(3.17) ĨKM
J (�y s) =

∣∣∣∑
ω

ĨKM
J (�y s, ω)

∣∣∣,
where, by slightly abusing the notation, we denote by σJ(ω)UJ(ω)V

∗
J (ω) the projection onto

the Jth singular vector of P̂(ω).
Remark 1. One of the main assumptions that is essential for the construction of the pro-

posed imaging functional, and for the subsequent analysis in section 5, is that the array spans
the whole waveguide, a hypothesis that is probably not realistic in applications. We are cur-
rently investigating the generalization of this approach to the case of partial array aperture.
In this case the analysis does not seem at all straightforward as, for example, key properties
such as the orthonormality of the vertical eigenfunctions Xn along the array fail to hold.
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Figure 2. Schematic representation of a waveguide truncated near and far from the source with two perfectly
matched layers (PMLs).

4. Numerical experiments. In this section we present numerical experiments for scat-
terers of various shapes and sizes. In order to construct the array response matrix, which
is necessary for evaluating the imaging functionals, we solve numerically the wave equation
problem (2.1). To this end, we use Montjoie (http://montjoie.gforge.inria.fr/), a high-order
finite element C++ code developed at INRIA, designed to solve problems arising in wave
propagation phenomena, such as acoustic, electromagnetic, aeroacoustic, and elastodynamic
problems.

We consider a waveguide with depth equal to D = 200 m and sound speed c0 = 1500 m/s.
The vertical array is placed at za = 40 m and consists of N = 39 transducers uniformly
distributed in the water column with a pitch h = 5 m. Point-like sources are simulated by
considering the source term in (2.1) to be of the form f(t, �x) = h(t) g(�x; �xs). Here h(t) is a
Ricker function of time, given by

h(t) =
√
2f0

[
1− 4π2f2

0 (t− tc))
2
]
exp

{
−[

√
2πf0(t− tc)]

2
}
,

where f0 is the central frequency of the pulse and tc is the time at which the source attains
its maximum. In the numerical results that follow, f0 = 75 Hz, tc = 0.01 s, and the final
computation time is taken as T = 4 s. The function g(�x; �xs) is a Gaussian, given by g(�x; �xs) =√

2π/α exp(−α|�x − �xs|2), where α = ln(106)/r2; r determines the support of the Gaussian
and is taken as 10 m.

The originally infinite (in the z-direction) domain is truncated by introducing two perfectly
matched layers (PMLs) [2, 9]; see Figure 2. The one near the source is confined in range
[−100, 0], while the other, far from the source, is confined in [500, 600] (all distances are in
meters). We have checked that the width of 100 m for the PMLs was enough to absorb
the waves efficiently. The resulting computational domain is discretized with quadrangles on
which the usual basis functions of the Qn family (Qn = span{x�ym, 0 ≤ �,m ≤ n}) for n = 8
are used. Numerical quadrature is based on Gauss–Lobatto rules, and time discretization
employs a fourth-order leapfrog scheme.

In all cases the frequencies that are used are close to a central reference frequency f0 =
75 Hz, for which the corresponding wavelength is equal to λ0 = 20 m. In particular, we
consider frequencies ranging from 70.5 to 79.5 Hz with an increment of 1 Hz.

http://montjoie.gforge.inria.fr/
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Figure 3. Normalized singular values of ̂Π (left subplot) and ̂P (right subplot) for a circle scatterer with
diameter δ = 40 m.
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Figure 4. IKM (left subplot) versus ˜IKM (right subplot) for a circular scatterer with diameter δ = 40 m.

In what follows we will examine the performance of the imaging functionals IKM and ĨKM.
Let us recall the results for selective imaging in free space: It was shown in [4] that information
about the edges of a reflector is contained in those singular vectors that correspond to singular
values of the response matrix that lie in the intermediate regime between the large ones and
zero. In our numerical simulations we observe the same behavior for imaging in waveguides
with ĨKM, but this is not the case for IKM. The behavior of ĨKM will be explained with the
analysis carried out in section 5.

Test case 1: Circular scatterer with diameter δ = 40 m. We consider here a circular scatterer
with diameter δ = 2λ0 = 40 m centered at (440, 100) m. Figure 3 depicts the singular values
(normalized with respect to the largest one) of the matrices Π̂ and P̂ for a frequency equal to
75.5 Hz. As expected, only a few of the singular values are nonzero.

In Figure 4 we plot the values of IKM and ĨKM when the full matrices Π̂ and P̂, respectively,
are used. In both cases we see that the front part of the circle is recovered, although for ĨKM

the image is supported mainly around the center of the circle at x = 100 m.
In Figure 5 we present the results of selective imaging with IKM

J and ĨKM
J (see (3.7) and

(3.17), respectively) for J = 1, 4, and 5. For J = 1, IKM
J focuses at the endpoints of the

vertical diameter of the circle, while ĨKM
J focuses at the front center of the circle. For J = 4,

IKM
J seems to focus at the two endpoints of the horizontal diameter of the circle, and ĨKM

J at

the endpoints of the vertical diameter. For J = 5, both IKM
J and ĨKM

J seem to roughly indicate
the boundary of the circle.
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Figure 5. IKM
J (top row) versus ˜IKM

J (bottom row) for a circular scatterer with diameter δ = 40 m. J
indicates projection onto the Jth singular vector. From left to right: J = 1, J = 4, and J = 5.

As a first comment, note that selective imaging with ĨKM exhibits the expected behavior
(see, e.g., [4]), in the sense that the singular vector corresponding to the largest singular value
is associated to an image focused at the center of the object, while the vectors corresponding
to the intermediate singular values carry information about the edges.

Test case 2: Circular scatterer with diameter δ = 20 m for a single frequency. Here we
decrease the diameter of the previous circular scatterer to δ = λ0 = 20 m. In Figure 6 we plot
the values of |IKM

1 (ω)| and |ĨKM
1 (ω)| (selective imaging with respect to the first singular vector)

for single frequencies of 73 Hz (left column) and 74 Hz (right column). For both frequencies
|ĨKM

1 (ω)| focuses at the front center of the circle, as opposed to |IKM
1 (ω)| which focuses at its

edges for f = 73 Hz but in the center for f = 74 Hz. This kind of lack of robustness has
initially motivated us to work with ĨKM rather than with IKM.

Test case 3: Rhombus-shaped scatterer with diameter δ = 40 m. Here we want to assess
the performance of ĨKM

J in a more complex test case. Specifically, we consider a rhombus
with diameter δ = 40 m centered at (440, 100) m. In the left subplot of Figure 7 we plot the
singular values (normalized with respect to the largest one) of the matrix P̂ for a frequency
equal to 75.5 Hz. Now, the first four singular values are quite close to each other, greater
than 80% of the σ1(P̂(ω)). The next two are 30%–40% of the largest, the seventh is about
10%, and the rest lie below 5%. In the right subplot we plot the values of ĨKM using the full
matrix P̂. Figure 8 depicts the values of ĨKM

J (�y s) for J = 1, . . . , 6. Clearly, projection onto

the first singular vector leads to focusing at the center of the object. For J = 2, 3, and 4, ĨKM
J

carries information from the bulk and from the edges, while for J = 5 and 6, it focuses at the
endpoints of the vertical diameter.

Test case 4: Square scatterer with side length b = 40 m. Now we consider a square scatterer
of side length b = 2λ0 = 40 m, with its center located at (470, 100) m. In this test case
we examine the behavior of ĨKM and its filtered version under the influence of instrument
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Figure 6. |IKM
1 (ω)| (top row) versus |˜IKM

1 (ω)| (bottom row) for a circle-shaped scatterer with diameter
δ = 20 m for single frequencies of 73 Hz (left column) and 74 Hz (right column).
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Figure 7. Normalized singular values of ̂P (left subplot) and ˜IKM for a rhombus-shaped scatterer with
diameter δ = 40 m.

noise. In order to simulate measurement noise we proceed as in [4] and add a noise matrix
W (ω) with zero mean uncorrelated Gaussian distributed entries with variance εpavg, i.e.,
Wr,s(ω) ∼ N (0, εpavg). Here the average power received per source, receiver, and frequency is
given by

pavg =
1

N2Nfreq

Nfreq∑
i=1

‖Π̂(ωi)‖2F,
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Figure 8. ˜IKM
J for a rhombus-shaped scatterer with diameter δ = 40 m. J = 1, . . . , 6 and indicates

projection onto the Jth singular vector.

where ‖ · ‖F is the Frobenius matrix norm and Nfreq the number of frequencies. The expected
power of the noise W (ωi) over all frequencies, receivers, and sources is

E

⎡⎣Nfreq∑
i=1

‖W (ωi)‖2F

⎤⎦ = εN2Nfreq pavg.

Since the total power of the signal received over all frequencies, receivers, and sources is
N2Nfreq pavg, the signal-to-noise ratio (SNR) in dB is −10 log10 ε.

As before, we use frequencies ranging from 70.5 to 79.5 Hz with an increment of 1 Hz.
In Figure 9 we plot the singular values of the matrices Π̂ and P̂ for the frequency of 75.5 Hz
(normalized with respect to the largest singular value) in the absence of noise and for SNR
= 10, 0, and −10 dB. Notice that the singular values that are larger than 20% of the largest
singular value in the case of 10 dB SNR remain close to those corresponding to the unperturbed
matrices, while noise has a more profound influence in the singular values of 0 dB and −10 dB
SNR.

In Figure 10 we plot the images obtained with ĨKM without using any selective imaging
techniques. In all cases the left side of the scatterer is recreated.

Next, we use filtered versions of the matrix P̂ that employ more than one singular value.
These are chosen as follows [4]:

(a) we normalize the singular values with respect to the largest one,
(b) we determine an interval [α, β] ⊂ (0, 1), and
(c) we include in the filtered version of ĨKM,f all the singular values that lie in [α, β].
Figures 11–12 depict the values of ĨKM,f without noise included and when noise is included

with 0 and −10 dB SNR. We do not show the images with 10 dB SNR because they are
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Figure 9. Normalized singular values of ̂Π (left subplot) and ̂P (right subplot) for a square scatterer with
side length b = 40 m in the absence of noise and by adding noise with 10, 0, and −10 dB SNR.
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Figure 10. ˜IKM for b = 40 m, D = 200 m, c0 = 1500 m/s, f ∈ [70.5, 79.5] Hz, and SNR = ∞, 0,−10 dB.
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Figure 11. Normalized values of ˜IKM,f , for b = 40 m, D = 200 m, c0 = 1500 m/s, f ∈ [70.5, 79.5] Hz, and
SNR = ∞, 0,−10 dB, [α, β] = [0.05, 0.60].

essentially the same as those without noise. Specifically, in Figure 11 we have employed in
the computation of ĨKM,f the singular values that are 5%–60% of the largest one ([α, β] =
[0.05, 0.60]), and in Figure 12 we take [α, β] = [0.12, 0.74]. In both cases the results with 0 dB
SNR are qualitatively very similar to those obtained in the absence of noise. Note that even
with −10 dB SNR, we are still able to recreate the left side of the object, but the effect of the
noise is visible in the image.
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Figure 12. Normalized values of ˜IKM,f , for b = 40 m, D = 200 m, c0 = 1500 m/s, f ∈ [70.5, 79.5] Hz, and
SNR = ∞, 0,−10 dB, [α, β] = [0.12, 0.74].

5. Analysis of the imaging method. In this section we consider and analyze a simplified
model problem that allows us to obtain some explicit expressions of the array response matrix,
thus helping us to investigate and understand the phenomena we have observed in the selective
imaging approach of the previous sections.

Specifically, we consider the following model problem: In the marine environment de-
scribed in section 2 we assume that the active array passes through the x-axis; i.e., the
transducers’ coordinates are (0, xi), xi = ih, 1 ≤ i ≤ N , where h := D/(N + 1) is the
pitch. The target, denoted by T , is assumed to be a vertical one-dimensional perfect reflector,
i.e., a “crack” of width b, located at range z = L. The center of the target is denoted by
�y ∗ = (L, x0). Let us also denote by C the vertical section of the waveguide at range z = L,
i.e., C := {(L, x) : 0 ≤ x ≤ D}. This setup is schematically depicted in Figure 13 and aims at
simulating the left side of the square scatterer which we have examined in section 4. We refer
the reader to [26] for an analogous setup used to analyze the response matrix for extended
targets in the free space.
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Figure 13. A vertical crack, implemented in the waveguide.

5.1. Array response matrix. Assuming unit reflectivity at each point of the target, we
may approximate the response in a receiver placed at �xr = (0, xr) due to a source at �xs =
(0, xs), r, s ∈ {1, 2, . . . , N}, as

(5.1) Π̂(�xr, �xs, ω) =

∫
T
Ĝ(�y, �xr)Ĝ(�y, �xs) dx,
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where �y = (L, x), x ∈ [x0 − b/2, x0 + b/2], and Ĝ is the Green’s function defined in (2.5).
For future reference, let us also recall that μn, Xn are the eigenvalues and corresponding
eigenfunctions of the operator −d2/dx2 in H2(0,D) ∩H1

0 (0,D), defined in (2.3), and βn are
the horizontal wavenumbers defined in (2.4).

Inserting (2.5) into (5.1) shows that

(5.2) Π̂(�xr; �xs, ω) = −1

4

∞∑
m,n=1

eiβmL

βm
Xm(xs)Xn(xr)

eiβnL

βn

∫ x0+
b
2

x0− b
2

Xm(x)Xn(x)dx.

Moreover, let gm(xi) :=
i
2
eiβmL

βm
Xm(xi) =

(
Ĝ(·, �xi),Xm

)
L2(C), where the outer parentheses

in the second equality denote the standard L2 inner product on C. Let us also define G to be
the matrix

G :=

⎛⎜⎜⎜⎝
g1(x1) g2(x1) . . . gM (x1) gM+1(x1) . . .
g1(x2) g2(x2) . . . gM (x2) gM+1(x2) . . .

...
...

...
...

g1(xN ) g2(xN ) . . . gM (xN ) gM+1(xN ) . . .

⎞⎟⎟⎟⎠
and Ainf the (infinite) matrix with entries

(5.3) amn =

∫ x0+
b
2

x0− b
2

Xm(x)Xn(x)dx, m, n = 1, 2, . . . .

Then, using (5.2), we may write the array response matrix Π̂ as a matrix product of the form

(5.4) Π̂ = GAinfGT .

We point out that if L is sufficiently large and m ≥ M + 1, then

gm(xi) =
i

2

eiβmL

βm
Xm(xi) =

1

2

e−
√

μm−k2L√
μm − k2

Xm(xi) � 0,

or, equivalently, only the principal N ×M part of G is practically nonzero; thus, in practice,
instead of Ainf we work with its M ×M principal part denoted by AM . At this point let us
remark that although Π̂ is associated to Ainf (and, in practice, with AM ) through (5.4), we
cannot infer from this formula an explicit relation between their singular values.

It is now natural to ask how AM is related to the matrix P̂ that results when we project
the array response matrix Π̂ onto the propagating modes. Recalling the definition of P̂ (3.12)
and using the orthonormality of the eigenfunctions {Xn}n=1,2,..., one may immediately see
that

(5.5) P̂mn = −1

4
ei(βm+βn)Lamn, m, n = 1, . . . ,M,

or, in matrix form,

(5.6) P̂ = −1

4
QAMQ,

where Q is the diagonal matrix diag(eiβ1L, . . . , eiβML). Hence P̂ is unitarily equivalent to AM ,
since Q∗Q = I.
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5.2. Spectral properties of AM . In this section, we turn our attention to the spectral
properties of the real symmetric matrix AM , since we have shown that it is related to both
matrices Π̂ and P̂ involved in the computation of IKM and ĨKM, respectively. In what follows,
for an arbitrary positive integer n we shall denote by An the principal n×n submatrix of Ainf ,
and we will refer to either the eigenvalues/eigenvectors of An or to its singular values/vectors,
since the latter are just the former written in descending order.

For �,m ≥ 1, and in view of the simple trigonometric identity 2 sin a sin b = cos(a − b)−
cos(a+ b), it holds that

a�m =

∫ x0+
b
2

x0− b
2

X�(x)Xm(x)dx =
2

D

∫ x0+
b
2

x0− b
2

sin
�πx

D
sin

mπx

D
dx

=
1

D

∫ x0+
b
2

x0− b
2

cos
(�−m)πx

D
dx− 1

D

∫ x0+
b
2

x0− b
2

cos
(�+m)πx

D
dx.

Hence

An = Tn −Hn, where Tn := (t�−m)n�,m=1, Hn := (t�+m)n�,m=1,

and

(5.7) tm =
1

D

∫ D

0
�T (x) cos

mπx

D
dx,

where �T (x) is the indicator function of T . Note that �T (x) is the so-called generating
function of the matrices An, Tn, and Hn. One may immediately recognize Tn as a (real
symmetric) Toeplitz matrix, i.e., a matrix with constant entries along the diagonals, and Hn

as a Hankel matrix, i.e., a matrix with constant skew-diagonals (these are the diagonals that
are perpendicular to the main diagonal). Hence An is a Toeplitz-minus-Hankel matrix. As
we shall briefly discuss next, the spectral properties of An are determined by the Toeplitz
part Tn. This can be seen, for example, by modifying appropriately the proofs in the work of
Fasino [8], who studies the spectral properties of Toeplitz-plus-Hankel matrices, or by tracing
back to the work of Trench [24], who studies the spectral properties of the real symmetric
Toeplitz matrix

Tn = (tr−s)
n
r,s=1, where tr =

1

π

∫ π

0
f(x) cos rx dx,

and the generating function f ∈ L2[0, π]. Following Trench’s notation, a vector x ∈ Rn is
called symmetric if Jx = x and skew-symmetric if Jx = −x, where J is the flip matrix
(i.e., the matrix that has ones on the secondary diagonal and zeros elsewhere); see also [1].
Moreover, an eigenvalue λ of T is defined to be even (odd) if T has a symmetric (skew-
symmetric) λ-eigenvector.

Now, let λ(n)

1 ≤ λ(n)

2 ≤ · · · ≤ λ(n)
n be the eigenvalues of Tn, and let ν(n)

1 ≤ ν(n)

2 ≤ · · · ≤ ν(n)
n

be the eigenvalues of An. Since, in our case, the generating function f of the matrices An, Tn,
and Hn, is the indicator function of T , its essential lower and upper bounds are simply 0 and
1, respectively. A result of Szegő (see [11, pp. 64–65]) guarantees that (i) 0 ≤ λ(n)

i ≤ 1 for all
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i = 1, . . . , n; (ii) for any fixed integer k, λ(n)

k → 0, λ(n)

n−k → 1 as n → ∞; and (iii) if G is any
continuous function defined in [0,1], we have

(5.8) lim
n→∞

1

n

n∑
i=1

G(λ(n)

i ) =
1

D

∫ D

0
G(f(x))dx.

Moreover, the following theorem specializes results stated in [24] to our case, where we
work on [0,D], the entries of our matrix are given in (5.7), and f = �T .

Theorem 5.1.
(a) The odd eigenvalues κ(2n+1)

1 ≤ κ(2n+1)

2 ≤ · · · ≤ κ(2n+1)
n of T2n+1 are the eigenvalues of

An [24, Thm. 2].
(b) Since f is bounded, the sets {λ(n)

i }ni=1 and {κ(2n+1)

i }ni=1 are absolutely equally distributed
[24, Def. 1 and Thm. 5].

(c) Since f is bounded, (5.8) also holds for ν(n)

i instead of λ(n)

i . Moreover, if for ε > 0
C(ε, 1− ε, n) is the cardinality of the set {i : ε ≤ κ(2n+1)

i ≤ 1− ε}, then

lim
n→∞

1

n
C(ε, 1− ε, n) = 0

[24, Lem. 2 and Thm. 6].
Summarizing, the eigenvalues of the matrix An are clustered near 0 and 1, and considering

the function G to be the identity on [0, 1], we immediately see that

lim
n→∞

1

n

n∑
i=1

ν(n)

i =
1

D

∫ D

0
�T (x) dx =

b

D
.

This indicates that asymptotically, as n → ∞, the ratio of the nonzero eigenvalues of An to
the total number of eigenvalues is equal to b/D. In our case, where n is equal to the number of
propagating modes M =

⌊
2D
λ

⌋
, it is expected that the number of “significant” singular values

for our matrix AM is

(5.9)

[
M

b

D

]
≈
[
2b

λ

]
.

To conclude, we have shown that the number of nonzero singular values is related to the
size of the object. In particular, by performing a standard resolution analysis, one may deduce
that the cross-range resolution is λ/2; therefore the rank of the matrix is roughly equal to the
size of the object divided by the “array resolution.” The same result has been obtained in the
free space case (see [4, sect. 4.5.2]).

In the next subsection we explore the form of the eigenvectors of AM in order to gain some
insight about the behavior of the functionals that we are using for selective imaging.

5.3. Selective imaging. We consider the imaging functional ĨKM
J , where the subscript J

indicates that the matrix P̂ is approximated by means of the Jth singular vector for selective
imaging. Then, for a search point �y s = (L, xs) located at the correct range L, (3.16) and (5.5)
imply that

(5.10) ĨKM
J (�y s) =

1

16h2

M∑
m,n=1

Xm(xs)Xn(x
s)σJu

m
J unJ = σJ

(
1

4h

M∑
n=1

unJXn(x
s)

)2

,
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Figure 14. Left: The singular values of AM (M = 19). Right: The graphs of (sJ (x))
2, x ∈ [0, 200], for

J = 1, 5, 8, normalized with respect to their largest values.

where uJ = (u1J , u
2
J , . . . , u

M
J )T is the singular vector of AM that corresponds to the singular

value σJ . Recalling the definition of Xn in (2.3), and suppressing constants, we associate to
uJ the trigonometric polynomial

(5.11) sJ(x) =

M∑
n=1

unJ sin
nπx

D
.

Therefore, the behavior of ĨKM
J is in fact determined by the properties of sJ(x), which we shall

illustrate in the following example: Consider a waveguide with depth equal to D = 200 m
and constant sound speed equal to c0 = 1500 m/s. In Figure 14 (left subplot) we plot the
singular values of AM for a frequency of 74 Hz, for which the number of propagating modes
M = 19, the wavelength λ ≈ 20.27 m, and T is centered at x0 = 70 m, while its width is
taken as b = 40 m ≈ 2λ. According to (5.9) the number of “significant” singular values equals
4. Indeed, one may see that the first three remain very close to 1, the fourth is approximately
0.65, and the fifth lies in the transition layer between 0 and 1 close to 0.3. The sixth is less
than 0.1, while the rest are very close to zero. In the right subplot of Figure 14 we plot the
square of the values of the trigonometric polynomials sJ(x) for J = 1, 5, and 8, normalized
with respect to their largest values. The relevant singular vectors uJ , J = 1, 5, 8, have been
computed with MATLAB. The red circle in these graphs indicates the center x0 of T , and the
red dashed lines the width b. Note that s1(x) that corresponds to the first singular value is
supported in T and exhibits a peak at the center x0, s5(x) exhibits peaks near the endpoints
of T , and s8(x) is approximately zero for x ∈ T . These results remind us of the spectral
properties and the band-limited behavior of the so-called prolate matrix ; see [21, 25, 12]. As
remarked in [12] for the prolate matrix, one may characterize the eigenspace corresponding
to the eigenvalue cluster near 1 as the signal subspace, the eigenspace corresponding to the
eigenvalue cluster near 0 as the noise subspace, and the eigenspace corresponding to eigenvalues
in the intermediate layer as the transient subspace ; the terminology is adopted from [12].

Next, we try to explore the form of the singular vectors (eigenvectors) of AM . To this
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end, we consider an orthonormal basis {Yj(x)}∞j=1 of L2[x0 − b/2, x0 + b/2]; specifically, let

Yj(x) =

√
2

b
sin

(
(x− x0 +

b
2)jπ

b

)
, j = 1, 2, . . . .

Then, the restriction of the eigenfunctions Xn ∈ L2[0,D] on the crack T may be written as

Xn(x)|[x0−b/2,x0+b/2] =

∞∑
j=1

vnj Yj(x), where vnj =

∫ x0+
b
2

x0− b
2

Xn(x)Yj(x) dx.

The orthonormality of the Yi and Parseval’s relation imply that

(5.12) amn = (Xm,Xn)L2(T ) =
∑
i

(Xm, Yi)L2(T )(Xn, Yi)L2(T ) =
∞∑
i=1

vmi vni .

Let us define

(5.13) vi = (v1i , v
2
i , . . . , v

M
i , . . .)T ,

and note that the sequences vi ∈ l2 for every i. Then the infinite matrix Ainf may be written
as

(5.14) Ainf =
∞∑
i=1

vi v
T
i .

Moreover, the vi are orthonormal. Indeed, let 〈·, ·〉 denote the standard inner product in l2,
and Ỹi the extension by zero of Yi on [0,D]. Then

〈vi,vj〉 =

∞∑
n=1

vni v
n
j =

∑
n

(Xn, Yi)L2(T )(Xn, Yj)L2(T )

=
∑
n

(Ỹi,Xn)L2[0,D](Ỹj ,Xn)L2[0,D]

Parseval
= (Ỹi, Ỹj)L2[0,D] = (Yi, Yj)L2(T ) = δij .

Let V be the closure of span{vi}i=1,2,.... Then l2 = V ⊕ V ⊥, and Ainf is a projection operator
whose eigenvalues are 0 and 1.

It remains to investigate the relation between the eigenvectors uj of AM that correspond
to eigenvalues close to 1, and the eigenvectors vj of Ainf corresponding to the eigenvalue 1.
Let us multiply, for example, AM by the vector consisting of the M first components of vj
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Figure 15. The singular vector uJ of AM (its components are marked with red squares) versus the M first
terms of vJ marked with blue circles for J = 1 (top) and J = 2 (bottom).

(i.e., (v1j , v
2
j , . . . , v

M
j )T ). The ith component of the resulting vector is equal to

M∑
k=1

aikv
k
j =

∞∑
k=1

aikv
k
j −

∞∑
k=M+1

aikv
k
j

=

∞∑
k=1

(Xi,Xk)L2(T )(Xk, Yj)L2(T ) −
∞∑

k=M+1

aikv
k
j

=
∞∑
k=1

(Xi�T ,Xk)L2[0,D](Ỹj ,Xk)L2[0,D] −
∞∑

k=M+1

aikv
k
j

= (Xi�T , Ỹj)L2[0,D] −
∞∑

k=M+1

aikv
k
j = vij −

( ∞∑
k=M+1

aikv
k
j

)
.

The last term in parentheses in the above equation depends on i, j, b, and D, and is in general
small (this has been checked numerically in all the test cases that we have considered). Hence
if the jth singular value is approximately 1, then (v1j , v

2
j , . . . , v

M
j )T approximates uj, i.e., the

jth singular vector of AM . This is illustrated in Figure 15, where we plot the components of
the first two singular vectors uJ , J = 1, 2, of AM and the M first terms of the sequences vJ ,
J = 1, 2, for the parameters of the previous example for which M = 19.

Hence, as long as J is associated to a singular vector that lies in the signal subspace, one
may approximate ĨKM

J as

(5.15) ĨKM
J (�y s) ≈

M∑
m,n=1

Xm(xs)Xn(x
s)vmJ vnJ =

(
M∑
n=1

vnJ Xn(x
s)

)2

,
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where constants are once again suppressed. Moreover, for M large enough, we formally get

(ĨKM
J (�y s))1/2 ≈

∣∣∣ ∞∑
n=1

vnJXn(x
s)
∣∣∣ = ∣∣∣∑

n

(Xn, YJ)L2(T )Xn(x
s)
∣∣∣

=
∣∣∣∑

n

(ỸJ ,Xn)L2[0,D]Xn(x
s)
∣∣∣ = |ỸJ(x

s)|.(5.16)

Using the specific form of the YJ we deduce that, as long as the Jth singular value is close to
1,

(5.17) ĨKM
J (�y s) ≈ 2

b
sin2

(
(xs − x0 +

b
2)Jπ

b

)
.

In the next section, we will compare these asymptotic results with numerical simulations.

5.4. Numerical experiments. In this section, we present numerical results for the simpli-
fied model of the vertical one-dimensional scatterer (the crack). Specifically, (a) we compare
results of selective imaging with ĨKM

J with those obtained using the asymptotic formulas (5.15),

(5.17), and (b) we compare results between selective imaging with IKM
J and ĨKM

J . In all the
following examples the sound speed is taken as c0 = 1500 m/s, and the depth of the waveguide
is equal to D = 200 m.

5.4.1. ĨKM
J versus asymptotics. First, we consider a single frequency f = 74 Hz; hence

the wavelength λ ≈ 20.27 m. The array has N = 39 receivers, the pitch h = 5 m � λ/4,
and the crack, centered at (L, x0) = (410, 70) m, has length b = 40 m � 2λ. The number
of propagating modes in the waveguide is M = 19. The singular values of AM are shown in
Figure 14. We have seen previously that AM and, consequently, the matrix P̂ defined in (5.5)
have [2b/λ] = 4 significant singular values. In other words, and with reference to Figure 14, it
is expected that the first three singular vectors compose the signal subspace, the fourth and
fifth lie in the transient subspace, and the rest correspond to the noise subspace.

We now turn to checking the validity of the asymptotic expressions (5.15) and (5.17). In
Figure 16 we superimpose the normalized graphs of ĨKM

J (�x s, ω) (see (3.16)), of (5.15), and of
(5.17) for �x s that are located at the correct range L, and for J = 1 and 2. The subscript J
indicates that only the Jth singular vector is employed in the filtered version of the matrix P̂,
defined in (5.5). As one may immediately see, there is good agreement between the numerics
and the asymptotic expressions.

In Figure 17 we show analogous results for selective imaging with ĨKM
J (�x s, ω) and (5.15),

based on the third to the sixth singular vectors. Now, one may notice somewhat larger
discrepancies, but, in general, the asymptotic expression agrees well with the numerical results
for J = 3, 4, and 5. For J = 6 there is a clear mismatch, with ĨKM

J focusing approximately
4.5 m below the lower endpoint of the crack, since now the corresponding singular vector
belongs to the noise subspace. (The discrepancies, as expected, are even larger between the
results of ĨKM

J (�x s, ω) and those of (5.17), and we do not include them in the figure. These
discrepancies may be attributed to the fact that the asymptotic analysis is based on matrices
of order n, where n → ∞, while in the numerics only their principal M ×M part has been
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Figure 16. The graph of ˜IKM
J ((L, xs), ω) (solid black line) normalized and superimposed on the graphs of

(5.15) (dash-dotted red line) and (5.17) (dashed blue line). J indicates projection onto the Jth singular vector.
The ordinates x0 − b/2 and x0 + b/2 are indicated by dashed green lines, and x0 is marked with a green circle.
Here c0 = 1500 m/s, f = 74 Hz, D = 200 m, b = 40 m, x0 = 70 m, and J = 1 (left subplot), J = 2 (right
subplot).
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Figure 17. The graph of ˜IKM
J ((L, xs), ω) (solid black line) superimposed on the graph of (5.15) (dash-

dotted red line). J indicates projection onto the Jth singular vector, and the ordinates x0−b/2 and x0+b/2 are
indicated by dashed green lines, while x0 is marked with a green circle. Here J = 3, 4, 5, and 6, c0 = 1500 m/s,
f = 74 Hz, D = 200 m, b = 40 m, and x0 = 70 m.

taken into account. For example, the orthogonality of the vi (see (5.13)) is valid only for the
infinite matrix Ainf and is expected to hold only approximately for fixed n.)

Figures 16 and 17 suggest that selective imaging with ĨKM
J (ω) by means of the first singular

vector focuses at the middle of the object, while the fourth and fifth singular vectors are
focusing mainly at the lower and the upper endpoints of the crack, respectively.

5.4.2. IKM
J versus ĨKM

J . Here, we compare selective imaging with IKM
J versus ĨKM

J , keep-
ing the same setup as in section 5.4.1.



SELECTIVE IMAGING OF REFLECTORS IN TWO-DIMENSIONAL WAVEGUIDES 2737

Frq =74 Hz, λ = 20.2703 m, b =40 m, x
0
 = 70 m, J =1

Range (m)

C
ro

ss
−

ra
ng

e 
(m

)

300 350 400 450 500

0

20

40

60

80

100

120

140

160

180

200

Frq =74 Hz, λ = 20.2703 m, b =40 m, x
0
 = 70 m, J =2

Range (m)

C
ro

ss
−

ra
ng

e 
(m

)

300 350 400 450 500

0

20

40

60

80

100

120

140

160

180

200

Frq =74 Hz, λ = 20.2703 m, b =40 m, x
0
 = 70 m, J =4

Range (m)

C
ro

ss
−

ra
ng

e 
(m

)

300 350 400 450 500

0

20

40

60

80

100

120

140

160

180

200

Frq =74 Hz, λ = 20.2703 m, b =40 m, x
0
 = 70 m, J =5

Range (m)

C
ro

ss
−

ra
ng

e 
(m

)

300 350 400 450 500

0

20

40

60

80

100

120

140

160

180

200

Freq =74 Hz, λ = 20.2703 m, b =40 m, x
0
 = 70 m, J2 =1

Range (m)

C
ro

ss
−

ra
ng

e 
(m

)

300 350 400 450 500

0

20

40

60

80

100

120

140

160

180

200

Freq =74 Hz, λ = 20.2703 m, b =40 m, x
0
 = 70 m, J2 =2

Range (m)

C
ro

ss
−

ra
ng

e 
(m

)

300 350 400 450 500

0

20

40

60

80

100

120

140

160

180

200

Freq =74 Hz, λ = 20.2703 m, b =40 m, x
0
 = 70 m, J2 =4

Range (m)

C
ro

ss
−

ra
ng

e 
(m

)

300 350 400 450 500

0

20

40

60

80

100

120

140

160

180

200

Freq =74 Hz, λ = 20.2703 m, b =40 m, x
0
 = 70 m, J2 =5

Range (m)

C
ro

ss
−

ra
ng

e 
(m

)

300 350 400 450 500

0

20

40

60

80

100

120

140

160

180

200

Figure 18. Values of IKM
J (ω) (top row) and ˜IKM

J (ω) (bottom row) for the crack, where J = 1, 2, 4, 5 indicates
projection onto the Jth singular vector.

In the top row of Figure 18 we plot the modulus of IKM
J (ω) (see (3.6)) for J = 1, 2, 4, and

5, and in the bottom row the corresponding results for the modulus of ĨKM
J (ω) (see (3.16)).

As before, J indicates projection onto the Jth singular vector, and the search domain is
[290, 530]× [0, 200] (all distances are in meters). Note the robustness in the results of ĨKM

J (ω),
where projection onto the first singular vector focuses in the center of the crack as projection
onto subsequent singular vectors results in focusing towards the edges, as opposed to the
results of IKM

J (ω).
In this section we presented the theoretical analysis of our selective imaging functional, as

well as numerical results for the model problem of a crack. These results are consistent with,
and have helped in understanding and explaining, the numerical results presented in section
4 in the more general case of extended reflectors.

6. Conclusions. In this paper we considered the problem of selective imaging extended
reflectors in a waveguide using an active array of sensors. To this end, we proposed a novel
selective imaging functional based on Kirchhoff migration and the singular value decompo-
sition of P̂(ω), which is a weighted modal projection of the array response matrix. The
proposed imaging method has been theoretically analyzed for a simplified model of a vertical
one-dimensional reflector of width b, and the following main results were derived:

1. We showed that the rank of P̂(ω) is equal to [ b
λ/2 ], that is, the size of the reflector

divided by the array resolution λ/2 (λ being the wavelength at frequency ω). This is
a novel result for a waveguide geometry.

2. We derived analytic expressions for the singular vectors of P̂(ω) and for our selective
imaging functional. Exploiting these expressions, we showed that imaging using the
projection of P̂(ω) onto its first singular vector exhibits focusing at the center of the
reflector, while by projecting onto the last significant singular vector we create an
image that focuses at the endpoints of the reflector.

These results are in agreement with those obtained in free space (cf. [4]). Moreover, they
are consistent with, and explain our selective imaging numerical results concerning, several
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extended reflector geometries.
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