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Abstract

Computational wave propagation models are widely used in underwater and atmospheric sound propagation simulation. In most realistic cases
the physical domains involved are irregular. We have developed finite element techniques, applied to general irregular meshes and coupled with
discrete, artificial absorbing boundary conditions of nonlocal type, for the Helmholtz equation and its ‘standard’ parabolic approximation. The
physical domain is axially symmetric, with several fluid layers of variable acoustic properties. Boundaries and interfaces of general topography
are allowed. The resulting models are referred to as the FENL and CNP1-NL models, respectively. We present results of the FENL model for un-
derwater acoustic applications related to object identification and of the CNP1-NL for atmospheric sound propagation over an irregular terrain.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Computational wave propagation has lately received in-
creased interest due to its applicability in various scientific
fields, such as the simulation of sound waves propagation in
the atmosphere and in the sea. The simulation of atmospheric
and underwater sound propagation is widely used in problems
in environmental sciences. To develop effective simulations,
methods that provide accurate and low-cost computations
are sought.

The direct problem of underwater sound propagation mod-
eling is related mostly to industrial and military applications.
However, object detection and identification techniques, based
on the assessment of the distortion of the wave pattern, apply
to the recognition of localized, abrupt changes in the acoustic
properties due to the existence of currents and eddies.
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Nonetheless, the direct problem of underwater sound propaga-
tion is implicitly related to environmental problems due to in-
verse problem applications. As an example, many methods
that simplify and accelerate sea circulation models have as
a prerequisite the computation of flow velocities and temper-
atures via inverse acoustic problems. On the other hand, atmo-
spheric sound propagation modeling is directly related to
problems in environmental sciences, like the control of ambi-
ent noise emitted, for example, from various man-made sour-
ces, like wind parks, airports and highways.

In this paper we consider two-dimensional sound propaga-
tion, by assuming a physical domain in cylindrical coordinates
with axial symmetry. The domain consists of several fluid
layers with variable acoustic properties. The interfaces and
the sea bottom or the ground surface may have variable topog-
raphy. In the following sections we present direct numerical
solution methods, for the Helmholtz equation and its ‘stan-
dard’ parabolic approximation, based on finite element com-
putations over general irregular meshes. We truncate the
unbounded physical domains introducing an artificial
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boundary where we pose an exact, nonlocal, absorbing condi-
tion. Such a condition does not generate spurious reflections
from the artificial boundary and reduces significantly the
computational cost by avoiding the use of artificial absorbing
layers, especially when wavelength size requires fine
discretizations.

We consider the Helmholtz equation in cylindrical coordi-
nates, in an axially symmetric domain,

Dpþ k2ðz; rÞp¼ 0; ð1Þ

where pðz; rÞ is the acoustic pressure field due to a harmonic
source of frequency f, kðz; rÞ ¼ k0nðz; rÞ, k0 ¼ 2pf =c0 is a ref-
erence wave number associated with the reference sound
speed c0, and nðz; rÞ is the index of refraction of the fluid me-
dium. Here r denotes the horizontal distance (usually starting
from the source) and z denotes the respective vertical distance.
If the propagation has a limited aperture about the horizontal
direction, with weak backscattering, and we are many wave-
lengths away from the source, we can assume that
p ¼ uðz; rÞvðrÞ, where v satisfies vr ¼ ik0v (Tappert, 1977).
Then uðz; rÞ satisfies the evolution equation (with r a time-
like variable)

2ik0ur þ uzz þ k2
0

�
n2ðz; rÞ � 1

�
u¼ 0; ð2Þ

known as the ‘standard’ parabolic approximation of the Helm-
holtz equation or the ‘standard’ parabolic equation. Eq. (2) is
valid for propagation with aperture up to 15 �. Variations of
Eq. (2), the so-called ‘wide’ angle parabolic equations, deal
with simulation of propagations with larger apertures (Lee
et al., 2000).

In Section 2 we present the FENL model (Kampanis and
Dougalis, 1999; Mitsoudis et al., 2002). FENL employs
Eq. (1) in a suitable boundary value problem to simulate sound
propagation in the sea. The physical domain is a waveguide,
unbounded in the outflow (r) direction, with a bottom of vari-
able bathymetry. A piecewise linear finite element solution is
computed on an irregular mesh, suitably adjusted to a nonlocal
transparent boundary condition along a vertical boundary in
the outflow region.

In Section 3 we present the CNP1-NL model, which em-
ploys Eq. (2) in a suitable initial-boundary value problem to
simulate atmospheric sound propagation over irregular
ground. In the z direction the physical domain has an irregular
lower boundary and is unbounded above. A nonlocal boundary
condition is assumed along an artificial, horizontal upper
boundary, accounting for the effect of the above atmospheric
layer. A piecewise linear finite element solution in a suitable
curvilinear coordinate system, is marched in range using sec-
ond order centered finite differences. The curvilinear system is
defined via a transformation of coordinates that simplifies the
coupling with the nonlocal upper boundary condition.

In Section 4 we present results from the application of
FENL and CNP1-NL models to underwater and atmospheric
acoustic problems. The FENL model is used to examine the
distortion of the sound field in the sea from the presence of
axisymmetric discs (ring type structures) of different radii
within the domain of propagation. The CNP1-NL model is ap-
plied to the simulation of sound propagation over an irregular
terrain where the nonlocal boundary condition accounts for an
upper atmospheric layer with constant index of refraction.
A preliminary result where n2ðz; rÞ varies linearly in the upper
layer is also shown. Comparisons with the approximate full-
field solution provided by OASES (Schmidt, 1997) validate
the results.

A brief conclusion is found in Section 5.

2. The FENL model

We consider Eq. (1) in an axially symmetric waveguide, un-
bounded in the outflow (r) direction, consisting of several fluid
layers, separated by variable interfaces over a bottom of irreg-
ular bathymetry. Away from a harmonic source of frequency
f (Hz) (assumed to be located at depth z¼ zs, and range r¼ 0)
the acoustic pressure pðz; rÞ is determined by the p.d.e. (Eq.
(1)) supplemented with a source boundary condition for small
r, an outgoing radiation condition as r increases, a pressure-
release surface condition pð0; rÞ ¼ 0, a homogeneous Dirichlet
or Neumann bottom condition p¼ 0 or vp=vn ¼ 0 (here v=vn

denotes the normal derivative operator) and, in general, with
the usual transmission conditions across layer interfaces
(Kampanis and Dougalis, 1999).

In order to apply the finite element method, a finite compu-
tational domain is defined by the introduction of an artificial
outflow boundary, where we pose the nonlocal, transparent
boundary condition

vp

vr
¼ TðpÞ; ð3Þ

where T is the integral operator associated with the DtN map
of the exterior field (Goldstein, 1982; Kampanis and Dougalis,
1999) evaluated on the artificial boundary. The operator T is
expressed by an infinite sum involving the eigenvalues and ei-
genfunctions of the eigenvalue problem along z resulting from
the separation of variables in Eq. (1).

The boundary value problem is discretized using a standard
Galerkin formulation with linear finite elements on a general
mesh that properly fits the interfaces. The nonlocal condition
(Eq. (3)) is a generalized natural boundary condition and is ap-
proximated by a finite sum including only those eigenfunc-
tions that contribute significantly. The computational needs
for the solution of the discrete problem involve the following
tasks:

1. Construct the finite element mesh Th of the computational
domain.

2. Assemble the global finite element matrices.
3. Construct the DtN operator T.

a. Define the 1D finite element mesh, imposed by Th, on
the artificial boundary.

b. Assemble the matrices for the eigenvalue problem.
c. Solve the resulting generalized eigenvalue problem.
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4. Solve the indefinite linear system resulting from the finite
element discretization of the b.v.p. for Eq. (1).

5. Perform the post-processing of the finite element solution.

These tasks are described in detail in Kampanis and Dougalis
(1999) where the FENL code is presented. A schematic dia-
gram of the structure of the FENL code is shown in Fig. 1.
The FENL code is interfaced with freely available numerical
software and a graphical tool to handle some of the above-
mentioned tasks.

The FENL model provides accurate simulations of sound
propagation and backscattering at any angle. It has been tested
on several characteristic problems of sound propagation in var-
ious marine environments (Kampanis and Dougalis, 1999;
Dougalis et al., 1998; Kampanis and Ekaterinaris, 2001;
Kampanis and Flouri, 2003). The results were consistent with
those from other standard codes in the literature, as well as
with exact solutions where available. The memory requirements
of the FENL model increase with frequency since finer finite
element meshes are required. Therefore, FENL is most useful
for low to medium frequency propagations up to medium
ranges in shallow water.

The basic finite element code FENL can be found at the
Ocean Acoustics Library at http://www.hlsresearch.com/oalib/
other/fenl.

3. The CNP1-NL model

We consider Eq. (2) in an axially symmetric physical do-
main, with an irregular lower boundary corresponding to the

Fig. 1. Flowchart and interfaces of the FENL code.
ground surface, and unbounded above (in the z direction).
The physical domain may consist of several fluid layers,
separated by horizontal interfaces. The p.d.e. (Eq. (2)) is sup-
plemented with an outgoing radiation condition as z increases,
a locally reacting boundary condition of natural (Neumann)
type given by

uzþ aðrÞur þ bðz; rÞu¼ 0; ð4Þ

(here a and b depend, as functions of r, on the ground surface
variability and roughness, cf. Kampanis (2002) for the exact
formulae), a starting field at r¼ 0, and the usual transmission
conditions across layer interfaces.

A finite computational domain is defined by the introduc-
tion of an artificial horizontal boundary at a height zT, above
which the atmosphere has a constant index of refraction na.
We pose a nonlocal, transparent boundary condition
(Kampanis, 2002) in the form of the NtD map of the outer
acoustic field, given by

uðzT ; rÞ ¼ C

Z r

0

1ffiffi
s
p e

ik0
2 ðn2

a�1ÞsuzðzT; r� sÞds; ð5Þ

where C is a suitable constant.
Marching in range a finite element solution, satisfying the

boundary and interface conditions, could easily deal with the
initial-boundary value problem at hand, under the assumption
that the lower and upper boundaries of the computational do-
main are horizontal (Dougalis and Kampanis, 1996). In order
to treat the irregular ground surface, we employ a curvilinear
coordinate system (in range and height) fitting the irregular
lower boundary. Note that the transform must conserve the
form of Eq. (5), since it is convenient to implement in the dis-
cretization process. Therefore, a special transformation of co-
ordinates, which reduces to identity within an artificial layer
lying below the artificial upper boundary, is used to define
the curvilinear system (Kampanis, 2002). (We note that the
discrete analog of Eq. (5) is of the constrained (Dirichlet)
type.) Even though this transform leads to a slightly more
complicated p.d.e. and boundary condition than Eqs. (2) and
(4), the transformed computational domain is now rectangular.
Hence to advance the solution in range (i.e. for every r) the
same finite element grid in z may be used. The finite element
solution is a piecewise linear function, subjected to the result-
ing boundary conditions and is marched in range by a second
order, implicit finite difference scheme.

The transformation of coordinates technique was first intro-
duced and successfully operated in underwater acoustic prop-
agation modeled by parabolic equations (Dougalis and
Kampanis, 1996). With a suitable modification, it was applied
successfully to the ‘standard’ parabolic equation, modeling
sound propagation over an irregular terrain (cf. Kampanis
and Ekaterinaris, 2001; Kampanis, 2002) where the CNP1-
NL model has been initially presented. Since in practical ap-
plications, realistic ground surface topographies are required,
a GIS interface for the CNP1-NL code has also been incorpo-
rated (Kampanis and Flouri, 2003).

http://www.hlsresearch.com/oalib/other/fenl
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Fig. 2. FENL test case: undistorted transmission loss.

Fig. 3. FENL test case: distortion of the transmission loss by a rigid disc of diameter 20 m.



Fig. 4. FENL test case: distortion of the transmission loss by a rigid disc of diameter 4 m.
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Fig. 5. CNP1-NL test case: sound field over an irregular terrain. Downward refracting atmosphere in computational domain. Nonlocal b.c. for constant n.
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4. Examples

4.1. FENL application to the detection of a submerged
rigid disc

The FENL code has been compared extensively with other
standard codes for computational underwater acoustics in var-
ious underwater environments and showed an excellent agree-
ment (Kampanis and Dougalis, 1999; Dougalis et al., 1998;
Athanassoulis et al., in press).

In the test case considered here we take a rectangular do-
main of depth 75 m, consisting of two fluid layers, separated
by a horizontal interface at 45 m and having densities of 1.0
and 1.2 g/cm3, and sound speeds 1500 and 1700 m/s, respec-
tively. We consider propagation at a frequency of 75 Hz, due
to a harmonic source (modeled by a Gaussian distribution of
pressure values at a vertical, left boundary at a distance of
20 m from the source) (Mitsoudis et al., 2002; Dougalis
et al., 2003).

Fig. 2 shows the undistorted transmission loss, i.e. the
acoustic pressure field in a suitable logarithmic scale. Subse-
quent Figs. 3 and 4 show the distortions brought upon by
the presence of rigid discs having diameters of 20 and 4 m,
respectively. Comparing Figs. 2 and 4 we may deduce that
FENL is sensitive even to quite small obstacles.

4.2. CNP1-NL application to propagation
over an irregular terrain

So far the CNP1-NL code has been applied with success,
as is verified by comparisons with the OASES code, to
the simulation of sound propagation over irregular terrain
(Kampanis, 2002; Kampanis and Ekaterinaris, 2001; Kampanis
and Flouri, 2003). A general refracting atmosphere has been
considered within the computational domain. In the above at-
mospheric layer, whose effects are accounted via the nonlocal
boundary condition (Eq. (5)), a constant index of refraction
was assumed.

Fig. 5 shows the numerical results obtained by CNP1-NL
for a sound field produced by a harmonic source of frequency
40 Hz, in a downward refracting atmosphere with sound speed
330þ 0.12z m/s, up to a height of z¼ 100 m, and constant
speed of 342 m/s for larger z. The nonlocal condition (Eq.
(5)) is applied to an artificial horizontal boundary placed at
a height of zT¼ 100 m.
Fig. 6. CNP1-NL test case: sound field over irregular terrain. Downward refracting atmosphere in computational domain. Nonlocal b.c. for linear n2 in upward

refracting outer atmosphere.
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For an atmospheric layer with linear n2 the transparent
boundary condition of nonlocal type as described in Dawson
et al. (submitted for publication) has also been implemented
in the CNP1-NL code. Fig. 6 shows a preliminary testing
of the code for an upper atmospheric layer with
n2ðzÞ ¼ 1þ 0:00075ðz� 100Þ, which corresponds to an up-
ward refracting sound speed. This case involves propagation
at limited apertures, since high-angle energy is driven up-
wards, and therefore is effectively modeled by the ‘standard’
parabolic equation. This is actually the reason that Figs. 5
and 6 show a quite similar wave pattern, since the most signif-
icant contribution to the propagation comes from the lower
part of the atmosphere.

5. Conclusion

We have presented the FENL and CNP1-NL models, based
on finite element discretizations coupled with nonlocal bound-
ary conditions, for the Helmholtz equation and its ‘standard’
parabolic approximation, respectively, for sound propagation
in refractive fluid media. The advantages of both codes are
that they can handle irregular computational domains, with
variable acoustic properties, and accommodate outgoing radi-
ation conditions via suitable discretizations of the associated
transparent boundary conditions of nonlocal type on an artifi-
cial boundary. We have also quoted some results from the suc-
cessful benchmarking of these codes with underwater and
atmospheric sound propagation applications.
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